BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 11-19-2016, 08:35 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,173
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Selective excitation for spectral editing and assignment in separated local field experiments of oriented membrane proteins

Selective excitation for spectral editing and assignment in separated local field experiments of oriented membrane proteins

Publication date: January 2017
Source:Journal of Magnetic Resonance, Volume 274

Author(s): Sophie N. Koroloff, Alexander A. Nevzorov

Spectroscopic assignment of NMR spectra for oriented uniformly labeled membrane proteins embedded in their native-like bilayer environment is essential for their structure determination. However, sequence-specific assignment in oriented-sample (OS) NMR is often complicated by insufficient resolution and spectral crowding. Therefore, the assignment process is usually done by a laborious and expensive “shotgun” method involving multiple selective labeling of amino acid residues. Presented here is a strategy to overcome poor spectral resolution in crowded regions of 2D spectra by selecting resolved “seed” residues via soft Gaussian pulses inserted into spin-exchange separated local-field experiments. The Gaussian pulse places the selected polarization along the z-axis while dephasing the other signals before the evolution of the 1H-15N dipolar couplings. The transfer of magnetization is accomplished via mismatched Hartmann-Hahn conditions to the nearest-neighbor peaks via the proton bath. By optimizing the length and amplitude of the Gaussian pulse, one can also achieve a phase inversion of the closest peaks, thus providing an additional phase contrast. From the superposition of the selective spin-exchanged SAMPI4 onto the fully excited SAMPI4 spectrum, the 15N sites that are directly adjacent to the selectively excited residues can be easily identified, thereby providing a straightforward method for initiating the assignment process in oriented membrane proteins.
Graphical abstract








More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Spectral editing through laser-flash excitation in two-dimensional photo-CIDNP MAS NMR experiments.
Spectral editing through laser-flash excitation in two-dimensional photo-CIDNP MAS NMR experiments. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Spectral editing through laser-flash excitation in two-dimensional photo-CIDNP MAS NMR experiments. J Magn Reson. 2014 Sep;246:9-17 Authors: Sai Sankar Gupta KB, Daviso E, Jeschke G, Alia A, Ernst M, Matysik J Abstract In solid-state photochemically induced dynamic nuclear polarization...
nmrlearner Journal club 0 09-30-2015 10:34 PM
[NMR paper] Simultaneous acquisition of 2D and 3D solid-state NMR experiments for sequential assignment of oriented membrane protein samples.
Simultaneous acquisition of 2D and 3D solid-state NMR experiments for sequential assignment of oriented membrane protein samples. Related Articles Simultaneous acquisition of 2D and 3D solid-state NMR experiments for sequential assignment of oriented membrane protein samples. J Biomol NMR. 2015 Mar 7; Authors: Gopinath T, Mote KR, Veglia G Abstract We present a new method called DAISY (Dual Acquisition orIented ssNMR spectroScopY) for the simultaneous acquisition of 2D and 3D oriented solid-state NMR experiments for membrane...
nmrlearner Journal club 0 03-10-2015 07:22 PM
Simultaneous acquisition of 2D and 3D solid-state NMR experiments for sequential assignment of oriented membrane protein samples
Simultaneous acquisition of 2D and 3D solid-state NMR experiments for sequential assignment of oriented membrane protein samples Abstract We present a new method called DAISY (Dual Acquisition orIented ssNMR spectroScopY) for the simultaneous acquisition of 2D and 3D oriented solid-state NMR experiments for membrane proteins reconstituted in mechanically or magnetically aligned lipid bilayers. DAISY utilizes dual acquisition of sine and cosine dipolar or chemical shift coherences and long living 15N longitudinal polarization to obtain two...
nmrlearner Journal club 0 03-08-2015 01:07 AM
[NMR paper] A cross-polarization based rotating-frame separated-local-field NMR experiment under ultrafast MAS conditions.
A cross-polarization based rotating-frame separated-local-field NMR experiment under ultrafast MAS conditions. A cross-polarization based rotating-frame separated-local-field NMR experiment under ultrafast MAS conditions. J Magn Reson. 2014 Nov 15;250C:37-44 Authors: Zhang R, Damron J, Vosegaard T, Ramamoorthy A Abstract Rotating-frame separated-local-field solid-state NMR experiments measure highly resolved heteronuclear dipolar couplings which, in turn, provide valuable interatomic distances for structural and dynamic studies...
nmrlearner Journal club 0 12-09-2014 01:13 PM
Spectral editing through laser-flash excitation in two-dimensional photo-CIDNP MAS NMR experiments
From The DNP-NMR Blog: Spectral editing through laser-flash excitation in two-dimensional photo-CIDNP MAS NMR experiments Sai Sankar Gupta, K.B., et al., Spectral editing through laser-flash excitation in two-dimensional photo-CIDNP MAS NMR experiments. J Magn Reson, 2014. 246C(0): p. 9-17. http://www.ncbi.nlm.nih.gov/pubmed/25063951
nmrlearner News from NMR blogs 0 09-18-2014 12:12 AM
Spectral editing through laser-flash excitation in two-dimensional photo-CIDNP MAS NMR experiments
From The DNP-NMR Blog: Spectral editing through laser-flash excitation in two-dimensional photo-CIDNP MAS NMR experiments Gupta, K.B.S.S., et al., Spectral editing through laser-flash excitation in two-dimensional photo-CIDNP MAS NMR experiments. J. Magn. Reson., 2014(0). http://www.sciencedirect.com/science/article/pii/S1090780714001761
nmrlearner News from NMR blogs 0 07-02-2014 02:37 PM
Multidimensional oriented solid-state NMR experiments enable the sequential assignment of uniformly 15N labeled integral membrane proteins in magnetically aligned lipid bilayers
Multidimensional oriented solid-state NMR experiments enable the sequential assignment of uniformly 15N labeled integral membrane proteins in magnetically aligned lipid bilayers Abstract Oriented solid-state NMR is the most direct methodology to obtain the orientation of membrane proteins with respect to the lipid bilayer. The method consists of measuring 1H-15N dipolar couplings (DC) and 15N anisotropic chemical shifts (CSA) for membrane proteins that are uniformly aligned with respect to the membrane bilayer. A significant advantage of this approach is that tilt and azimuthal...
nmrlearner Journal club 0 10-10-2011 06:27 AM
1H-13C Separated Local Field Spectroscopy of Uniformly 13C Labeled Peptides and Prote
1H-13C Separated Local Field Spectroscopy of Uniformly 13C Labeled Peptides and Proteins Publication year: 2010 Source: Journal of Magnetic Resonance, In Press, Accepted Manuscript, Available online 1 July 2010</br> Eugene C., Lin , Chin H., Wu , Yuan, Yang , Christopher V., Grant , Stanley J., Opella</br> By incorporating homonuclear decoupling on both the 1H and 13C channels it is feasible to obtain high-resolution two-dimensional separated local field spectra of peptides and proteins that are 100% labeled with 13C. Dual-PISEMO (Polarization Inversion Spin Exchange Modulated...
nmrlearner Journal club 0 08-16-2010 03:50 AM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 05:21 PM.


Map