BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 07-10-2024, 10:56 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,387
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Selective correlations between aliphatic (13)C nuclei in protein solid-state NMR

Selective correlations between aliphatic (13)C nuclei in protein solid-state NMR

Solid-state nuclear magnetic resonance (NMR) is a potent tool for studying the structures and dynamics of insoluble proteins. It starts with signal assignment through multi-dimensional correlation experiments, where the aliphatic ^(13)C?-^(13)C? correlation is indispensable for identifying specific residues. However, developing efficient methods for achieving this correlation is a challenge in solid-state NMR. We present a simple band-selective zero-quantum (ZQ) recoupling method, named...

More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Access to aliphatic protons as reporters in non-deuterated proteins by solid-state NMR.
Access to aliphatic protons as reporters in non-deuterated proteins by solid-state NMR. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.rsc.org-images-entities-char_z_RSClogo.gif Related Articles Access to aliphatic protons as reporters in non-deuterated proteins by solid-state NMR. Phys Chem Chem Phys. 2015 Dec 21; Authors: Vasa SK, Rovů P, Giller K, Becker S, Linser R Abstract Interactions within proteins, with their surrounding, and with other molecules are mediated mostly by hydrogen atoms. In...
nmrlearner Journal club 0 12-28-2015 12:26 AM
[NMR paper] Proton-Detected Solid-State NMR Spectroscopy at Aliphatic Sites: Application to Crystalline Systems.
Proton-Detected Solid-State NMR Spectroscopy at Aliphatic Sites: Application to Crystalline Systems. Related Articles Proton-Detected Solid-State NMR Spectroscopy at Aliphatic Sites: Application to Crystalline Systems. Acc Chem Res. 2013 Jun 7; Authors: Asami S, Reif B Abstract When applied to biomolecules, solid-state NMR suffers from low sensitivity and resolution. The major obstacle to applying proton detection in the solid state is the proton dipolar network, and deuteration can help avoid this problem. In the past, researchers...
nmrlearner Journal club 0 06-12-2013 11:42 AM
Assignment strategies for aliphatic protons in the solid-state in randomly protonated proteins
Assignment strategies for aliphatic protons in the solid-state in randomly protonated proteins Abstract Biological solid-state nuclear magnetic resonance spectroscopy developed rapidly in the past two decades and emerged as an important tool for structural biology. Resonance assignment is an essential prerequisite for structure determination and the characterization of motional properties of a molecule. Experiments, which rely on carbon or nitrogen detection, suffer, however, from low sensitivity. Recently, we introduced the RAP (Reduced Adjoining Protonation) labeling scheme, which...
nmrlearner Journal club 0 12-06-2011 08:01 AM
Cross-Correlations Between Low-? Nuclei in Solids Via a Common Dipolar Bath
Cross-Correlations Between Low-? Nuclei in Solids Via a Common Dipolar Bath Publication year: 2011 Source: Journal of Magnetic Resonance, In Press, Accepted Manuscript, Available online 20 July 2011</br> Aanatoly K., Khitrin , Jiadi, Xu , Ayyalusamy, Ramamoorthy</br> Correlation of chemical shifts of low-? nuclei (such as 15N) is an important method for assignment of resonances in uniformly-labeled biological solids. Under static experimental conditions, an efficient mixing of low-? nuclear spin magnetization can be achieved by a thermal contact to the common reservoir of...
nmrlearner Journal club 0 07-21-2011 10:31 PM
High Resolution (1)H-Detected Solid-State NMR Spectroscopy of Protein Aliphatic Reson
High Resolution (1)H-Detected Solid-State NMR Spectroscopy of Protein Aliphatic Resonances: Access to Tertiary Structure Information. Related Articles High Resolution (1)H-Detected Solid-State NMR Spectroscopy of Protein Aliphatic Resonances: Access to Tertiary Structure Information. J Am Chem Soc. 2010 Oct 12; Authors: Asami S, Schmieder P, Reif B Biological magic angle spinning (MAS) solid-state nuclear magnetic resonance spectroscopy has developed rapidly over the past two decades. For the structure determination of a protein by solid-state NMR,...
nmrlearner Journal club 0 10-15-2010 02:01 AM
High Resolution 1H-Detected Solid-State NMR Spectroscopy of Protein Aliphatic Resonan
High Resolution 1H-Detected Solid-State NMR Spectroscopy of Protein Aliphatic Resonances: Access to Tertiary Structure Information Sam Asami, Peter Schmieder and Bernd Reif http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja106170h/aop/images/medium/ja-2010-06170h_0003.gif Journal of the American Chemical Society DOI: 10.1021/ja106170h http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/FuDz8jUhWPE
nmrlearner Journal club 0 10-13-2010 04:10 AM
Lipid-Protein Correlations in Nanoscale Phospholipid Bilayers by Solid-State NMR.
Lipid-Protein Correlations in Nanoscale Phospholipid Bilayers by Solid-State NMR. Lipid-Protein Correlations in Nanoscale Phospholipid Bilayers by Solid-State NMR. Biochemistry. 2010 Aug 30; Authors: Kijac A, Shih AY, Nieuwkoop AJ, Schulten K, Sligar SG, Rienstra CM Nanodiscs are an example of discoidal nanoscale lipid/protein particles that have been extremely useful for the biochemical and biophysical characterization of membrane proteins. They are discoidal lipid bilayer fragments encircled and stabilized by two amphipathic helical...
nmrlearner Journal club 0 09-02-2010 03:58 PM
[U. of Ottawa NMR Facility Blog] Solid State NMR of Half Integer Quadrupolar Nuclei
Solid State NMR of Half Integer Quadrupolar Nuclei Many students who do liquid state NMR or solid state NMR of spin I=1/2 nuclei have very little appreciation for the information content and complexity of the solid state NMR spectra of spin I = n/2 quadrupolar nuclei (n= 3, 5, 7....). In part, I think this may be due to the mathematics involved with explaining the important effects. With this post, I attempt to describe the NMR spectrum of an I = 5/2 nucleus in the soild state without resorting to mathematics. I hope that this post helps to boost the understanding and appreciation for the...
nmrlearner News from NMR blogs 0 08-21-2010 08:15 PM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 03:14 PM.


Map