BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 08-14-2010, 04:19 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,137
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default S3EPY: a Sparky extension for determination of small scalar couplings from spin-state

Abstract S3EPY is a Python extension to the program Sparky written to facilitate the assessment of coupling constants from in-phase/antiphase and spin-state-selective excitation (S3E) experiments. It enables the routine use of small scalar couplings by automating the coupling evaluation procedure. S3EPY provides an integrated graphical user interface to programs which outputs graphs and the table of determined couplings.
  • Content Type Journal Article
  • DOI 10.1007/s10858-009-9392-1
  • Authors
    • Petr Novák, Masaryk University National Centre for Biomolecular Research, Faculty of Science KotláÅ?ská 2 611 37 Brno Czech Republic
    • Lukáš ŽÃ*dek, Masaryk University National Centre for Biomolecular Research, Faculty of Science KotláÅ?ská 2 611 37 Brno Czech Republic
    • Veronika MotáÄ?ková, Masaryk University National Centre for Biomolecular Research, Faculty of Science KotláÅ?ská 2 611 37 Brno Czech Republic
    • Petr Padrta, Masaryk University National Centre for Biomolecular Research, Faculty of Science KotláÅ?ská 2 611 37 Brno Czech Republic
    • AlžbÄ?ta Å*venková, Academy of Sciences of the Czech Republic Laboratory of Molecular Genetics of Bacteria, Institute of Microbiology VÃ*deÅ?ská 1083 142 20 Prague Czech Republic
    • Jean-Marc Nuzillard, CNRS, Institute de Chimie Moléculaire de Reims BP 1039 51687 REIMS Cedex 2 France
    • Libor Krásný, Academy of Sciences of the Czech Republic Laboratory of Molecular Genetics of Bacteria, Institute of Microbiology VÃ*deÅ?ská 1083 142 20 Prague Czech Republic
    • VladimÃ*r SklenáÅ?, Masaryk University National Centre for Biomolecular Research, Faculty of Science KotláÅ?ská 2 611 37 Brno Czech Republic

Source: Journal of Biomolecular NMR
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
ncIDP-assign: A SPARKY extension for the effective NMR assignment of intrinsically disordered proteins.
ncIDP-assign: A SPARKY extension for the effective NMR assignment of intrinsically disordered proteins. ncIDP-assign: A SPARKY extension for the effective NMR assignment of intrinsically disordered proteins. Bioinformatics. 2011 Mar 3; Authors: Tamiola K, Mulder FA SUMMARY: We describe here the ncIDP-assign extension for the popular NMR assignment programme SPARKY, which aids in the sequence-specific resonance assignment of intrinsically disordered proteins (IDPs). The assignment plugin greatly facilitates the effective matching of a set of...
nmrlearner Journal club 0 03-05-2011 01:02 PM
[Optimization of the methods for small peptide solution structure determination by NMR spectroscopy].
. . Mol Biol (Mosk). 2010 Nov-Dec;44(6):1075-85 Authors: NMR spectroscopy was recognized as a method of protein structure determination in solution. However, determination of the conformation of small peptides, which undergo fast molecular motions, remains a challenge. This is mainly caused by impossibility to collect required quantity of the distance and dihedral angle restraints from NMR spectra. At the same time, short charged peptides play an important role in a number of biological processes, in particular in pathogenesis of neurodegenerative...
nmrlearner Journal club 0 02-05-2011 05:28 PM
[NMR paper] NMR scalar couplings across Watson-Crick base pair hydrogen bonds in DNA observed by
NMR scalar couplings across Watson-Crick base pair hydrogen bonds in DNA observed by transverse relaxation-optimized spectroscopy. Related Articles NMR scalar couplings across Watson-Crick base pair hydrogen bonds in DNA observed by transverse relaxation-optimized spectroscopy. Proc Natl Acad Sci U S A. 1998 Nov 24;95(24):14147-51 Authors: Pervushin K, Ono A, Fernández C, Szyperski T, Kainosho M, Wüthrich K This paper describes the NMR observation of 15N---15N and 1H---15N scalar couplings across the hydrogen bonds in Watson-Crick base pairs...
nmrlearner Journal club 0 11-17-2010 11:15 PM
Fully automated high-quality NMR structure determination of small (2)H-enriched prote
Fully automated high-quality NMR structure determination of small (2)H-enriched proteins. Related Articles Fully automated high-quality NMR structure determination of small (2)H-enriched proteins. J Struct Funct Genomics. 2010 Aug 24; Authors: Tang Y, Schneider WM, Shen Y, Raman S, Inouye M, Baker D, Roth MJ, Montelione GT Determination of high-quality small protein structures by nuclear magnetic resonance (NMR) methods generally requires acquisition and analysis of an extensive set of structural constraints. The process generally demands...
nmrlearner Journal club 0 08-25-2010 02:04 PM
LineShapeKin Sparky Extension
LineShapeKin Sparky Extension sparky More...
nmrlearner NMR bookmarks 0 08-19-2010 02:34 PM
MQ-HNCO-TROSY for the measurement of scalar and residual dipolar couplings in larger
Abstract We describe a novel pulse sequence, MQ-HNCO-TROSY, for the measurement of scalar and residual dipolar couplings between amide proton and nitrogen in larger proteins. The experiment utilizes the whole 2TN polarization transfer delay for labeling of 15N chemical shift in a constant time manner, which efficiently doubles the attainable resolution in 15N dimension with respect to the conventional HNCO-TROSY experiment. In addition, the accordion principle is employed for measuring (J + D)NHs, and the multiplet components are selected with the generalized version of the TROSY scheme...
nmrlearner Journal club 0 08-14-2010 04:19 AM
A structure refinement protocol combining NMR residual dipolar couplings and small angle scattering restraints
A structure refinement protocol combining NMR residual dipolar couplings and small angle scattering restraints F. Gabel, B. Simon, M. Nilges, M. Petoukhov, D. Svergun and M. Sattler Journal of Biomolecular NMR; 2008; 41(4); pp 199-208 Abstract: We present the implementation of a target function based on Small Angle Scattering data (Gabel et al. Eur Biophys J 35(4):313–327, 2006) into the Crystallography and NMR Systems (CNS) and demonstrate its utility in NMR structure calculations by simultaneous application of small angle scattering (SAS) and residual dipolar coupling (RDC)...
Abe Journal club 0 09-21-2008 11:30 PM
NMR: Basics: Spin, Isotopes, Couplings, FTNMR - Alexej Jerschow
NMR Basics: Spin, Isotopes, Couplings, FTNMR - Alexej Jerschow, NYU School of Medicine (part 1) (part 2)
Derek Educational web pages 0 09-12-2008 08:27 PM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 09:09 AM.


Map