BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 11-24-2010, 09:16 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,135
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Riboflavin synthase of Schizosaccharomyces pombe. Protein dynamics revealed by 19F NM

Riboflavin synthase of Schizosaccharomyces pombe. Protein dynamics revealed by 19F NMR protein perturbation experiments.

Related Articles Riboflavin synthase of Schizosaccharomyces pombe. Protein dynamics revealed by 19F NMR protein perturbation experiments.

BMC Biochem. 2003 Dec 23;4:18

Authors: Fischer M, Schott AK, Kemter K, Feicht R, Richter G, Illarionov B, Eisenreich W, Gerhardt S, Cushman M, Steinbacher S, Huber R, Bacher A

BACKGROUND: Riboflavin synthase catalyzes the transformation of 6,7-dimethyl-8-ribityllumazine into riboflavin in the last step of the riboflavin biosynthetic pathway. Gram-negative bacteria and certain yeasts are unable to incorporate riboflavin from the environment and are therefore absolutely dependent on endogenous synthesis of the vitamin. Riboflavin synthase is therefore a potential target for the development of antiinfective drugs. RESULTS: A cDNA sequence from Schizosaccharomyces pombe comprising a hypothetical open reading frame with similarity to riboflavin synthase of Escherichia coli was expressed in a recombinant E. coli strain. The recombinant protein is a homotrimer of 23 kDa subunits as shown by sedimentation equilibrium centrifugation. The protein sediments at an apparent velocity of 4.1 S at 20 degrees C. The amino acid sequence is characterized by internal sequence similarity indicating two similar folding domains per subunit. The enzyme catalyzes the formation of riboflavin from 6,7-dimethyl-8-ribityllumazine at a rate of 158 nmol mg(-1) min(-1) with an apparent KM of 5.7 microM. 19F NMR protein perturbation experiments using fluorine-substituted intermediate analogs show multiple signals indicating that a given ligand can be bound in at least 4 different states. 19F NMR signals of enzyme-bound intermediate analogs were assigned to ligands bound by the N-terminal respectively C-terminal folding domain on basis of NMR studies with mutant proteins. CONCLUSION: Riboflavin synthase of Schizosaccharomyces pombe is a trimer of identical 23-kDa subunits. The primary structure is characterized by considerable similarity of the C-terminal and N-terminal parts. Riboflavin synthase catalyzes a mechanistically complex dismutation of 6,7-dimethyl-8-ribityllumazine affording riboflavin and 5-amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione. The 19F NMR data suggest large scale dynamic mobility in the trimeric protein which may play an important role in the reaction mechanism.

PMID: 14690539 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Dynamic structure of bombolitin II bound to lipid bilayers as revealed by solid-state NMR and molecular-dynamics simulation.
Dynamic structure of bombolitin II bound to lipid bilayers as revealed by solid-state NMR and molecular-dynamics simulation. Dynamic structure of bombolitin II bound to lipid bilayers as revealed by solid-state NMR and molecular-dynamics simulation. Biophys J. 2010 Nov 17;99(10):3282-9 Authors: Toraya S, Javkhlantugs N, Mishima D, Nishimura K, Ueda K, Naito A Bombolitin II (BLT2) is one of the hemolytic heptadecapeptides originally isolated from the venom of a bumblebee. Structure and orientation of BLT2 bound to...
nmrlearner Journal club 0 03-03-2011 12:34 PM
The effects of anticalcification treatments and hydration on the molecular dynamics of bovine pericardium collagen as revealed by 13C solid-state NMR.
The effects of anticalcification treatments and hydration on the molecular dynamics of bovine pericardium collagen as revealed by 13C solid-state NMR. The effects of anticalcification treatments and hydration on the molecular dynamics of bovine pericardium collagen as revealed by 13C solid-state NMR. Magn Reson Chem. 2010 Sep;48(9):704-11 Authors: deAzevedo ER, Ayrosa AM, Faria GC, Cervantes HJ, Huster D, Bonagamba TJ, Pitombo RN, Rabbani SR This article describes a solid-state NMR (SSNMR) investigation of the influence of hydration and chemical...
nmrlearner Journal club 0 01-21-2011 12:00 PM
[NMR paper] Changes in calmodulin main-chain dynamics upon ligand binding revealed by cross-corre
Changes in calmodulin main-chain dynamics upon ligand binding revealed by cross-correlated NMR relaxation measurements. Related Articles Changes in calmodulin main-chain dynamics upon ligand binding revealed by cross-correlated NMR relaxation measurements. J Am Chem Soc. 2005 Jan 26;127(3):828-9 Authors: Wang T, Frederick KK, Igumenova TI, Wand AJ, Zuiderweg ER The fast dynamics of protein backbones are often investigated by nuclear magnetic relaxation experiments that report on the degree of spatial restriction of the amide bond vector. By...
nmrlearner Journal club 0 11-24-2010 11:14 PM
[NMR paper] Differential dynamics in the G protein-coupled receptor rhodopsin revealed by solutio
Differential dynamics in the G protein-coupled receptor rhodopsin revealed by solution NMR. Related Articles Differential dynamics in the G protein-coupled receptor rhodopsin revealed by solution NMR. Proc Natl Acad Sci U S A. 2004 Mar 9;101(10):3409-13 Authors: Klein-Seetharaman J, Yanamala NV, Javeed F, Reeves PJ, Getmanova EV, Loewen MC, Schwalbe H, Khorana HG G protein-coupled receptors are cell-surface seven-helical membrane proteins that undergo conformational changes on activation. The mammalian photoreceptor, rhodopsin, is the...
nmrlearner Journal club 0 11-24-2010 09:25 PM
[NMR paper] Conformation and backbone dynamics of bacteriorhodopsin revealed by (13)C-NMR.
Conformation and backbone dynamics of bacteriorhodopsin revealed by (13)C-NMR. Related Articles Conformation and backbone dynamics of bacteriorhodopsin revealed by (13)C-NMR. Biochim Biophys Acta. 2000 Aug 30;1460(1):39-48 Authors: Saitô H, Tuzi S, Yamaguchi S, Tanio M, Naito A It is demonstrated here how the secondary structure and dynamics of transmembrane helices, as well as surface residues, such as interhelical loops and N- or C-terminus of bacteriorhodopsin (bR) in purple membrane, can be determined at ambient temperature based on very...
nmrlearner Journal club 0 11-19-2010 08:29 PM
[NMR paper] Phospholipid headgroup dynamics in DOPG-d5-cytochrome c complexes as revealed by 2H a
Phospholipid headgroup dynamics in DOPG-d5-cytochrome c complexes as revealed by 2H and 31P NMR: the effects of a peripheral protein on collective lipid fluctuations. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Phospholipid headgroup dynamics in DOPG-d5-cytochrome c complexes as revealed by 2H and 31P NMR: the effects of a peripheral protein on collective lipid fluctuations. Solid State Nucl Magn Reson. 1997 Mar;8(1):55-64 Authors: Pinheiro TJ, Duer MJ, Watts A The...
nmrlearner Journal club 0 08-22-2010 03:31 PM
[NMR paper] Phospholipid headgroup dynamics in DOPG-d5-cytochrome c complexes as revealed by 2H a
Phospholipid headgroup dynamics in DOPG-d5-cytochrome c complexes as revealed by 2H and 31P NMR: the effects of a peripheral protein on collective lipid fluctuations. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Phospholipid headgroup dynamics in DOPG-d5-cytochrome c complexes as revealed by 2H and 31P NMR: the effects of a peripheral protein on collective lipid fluctuations. Solid State Nucl Magn Reson. 1997 Mar;8(1):55-64 Authors: Pinheiro TJ, Duer MJ, Watts A The...
nmrlearner Journal club 0 08-22-2010 03:03 PM
[NMR paper] Ca2+ binding to calmodulin and its role in Schizosaccharomyces pombe as revealed by m
Ca2+ binding to calmodulin and its role in Schizosaccharomyces pombe as revealed by mutagenesis and NMR spectroscopy. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--highwire.stanford.edu-icons-externalservices-pubmed-standard-jbc_full_free.gif Related Articles Ca2+ binding to calmodulin and its role in Schizosaccharomyces pombe as revealed by mutagenesis and NMR spectroscopy. J Biol Chem. 1995 Sep 1;270(35):20643-52 Authors: Moser MJ, Lee SY, Klevit RE, Davis TN As a first step toward identifying the important structural elements of...
nmrlearner Journal club 0 08-22-2010 03:50 AM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 04:52 AM.


Map