BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 11-17-2010, 11:15 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,187
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Reversible induction of ATP synthesis by DNA damage and repair in Escherichia coli. I

Reversible induction of ATP synthesis by DNA damage and repair in Escherichia coli. In vivo NMR studies.

Related Articles Reversible induction of ATP synthesis by DNA damage and repair in Escherichia coli. In vivo NMR studies.

J Biol Chem. 1998 Nov 13;273(46):30232-8

Authors: Dahan-Grobgeld E, Livneh Z, Maretzek AF, Polak-Charcon S, Eichenbaum Z, Degani H

Early metabolic events in Escherichia coli exposed to nalidixic acid, a topoisomerase II inhibitor and an inducer of the SOS system, were investigated by in vivo NMR spectroscopy, a technique that permits monitoring of bacteria under controlled physiological conditions. The energetics of AB1157 (wild type) and of its isogenic, SOS-defective mutants, recBC, lexA, and DeltarecA, were studied by 31P and 19F NMR before, during, and after exposure to nalidixic acid. The content of the NTP in E. coli embedded in agarose beads and perfused at 36 degreesC was found to be 4.3 +/- 1.1 x 10(-18) mol/cell, yielding a concentration of approximately 2.7 +/- 0.7 mM. Nalidixic acid induced in the wild type and mutants a rapid 2-fold increase in the content of the NTP, predominantly ATP. This induction did not involve synthesis of uracil derivatives or breakdown of RNA and caused cell proliferation to stop. Removal of nalidixic acid after 40 min of treatment rescued the cells and resulted in a decrease of ATP to control levels and resumption of proliferation. However, in DeltarecA cells, which were more sensitive to the activity of the drug, ATP elevation could not be reversed, and ATP content continued to increase faster than in control cells. The results ruled out association between the elevation of ATP and the induction of the SOS system and suggested involvement of a process reminiscent of apoptosis in the stimulation of ATP synthesis. Thus, the presence of the RecA protein was found to be essential for reversing the ATP increase and cell rescue, possibly by its function in repair of DNA damage.

PMID: 9804781 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
(1)H, (13)C and (15)N NMR assignments of the Escherichia coli Orf135 protein.
(1)H, (13)C and (15)N NMR assignments of the Escherichia coli Orf135 protein. (1)H, (13)C and (15)N NMR assignments of the Escherichia coli Orf135 protein. Biomol NMR Assign. 2011 May 7; Authors: Kawasaki K, Yoneyama M, Murata-Kamiya N, Harashima H, Kojima C, Ito Y, Kamiya H, Mishima M Escherichia coli Orf135 protein is thought to be an enzyme that efficiently hydrolyzes oxidatively damaged nucleotides such as 2-hydroxy-dATP, 8-hydroxy-dGTP and 5-hydroxy-CTP, in addition to 5-methyl-dCTP, dCTP and CTP, thus preventing mutations in cells caused by...
nmrlearner Journal club 0 05-10-2011 05:11 PM
[NMR paper] Solution NMR structure of the 48-kDa IIAMannose-HPr complex of the Escherichia coli m
Solution NMR structure of the 48-kDa IIAMannose-HPr complex of the Escherichia coli mannose phosphotransferase system. Related Articles Solution NMR structure of the 48-kDa IIAMannose-HPr complex of the Escherichia coli mannose phosphotransferase system. J Biol Chem. 2005 May 27;280(21):20775-84 Authors: Williams DC, Cai M, Suh JY, Peterkofsky A, Clore GM The solution structure of the 48-kDa IIA(Man)-HPr complex of the mannose branch of the Escherichia coli phosphotransferase system has been solved by NMR using conjoined rigid body/torsion...
nmrlearner Journal club 0 11-24-2010 11:14 PM
[NMR paper] Optimization of an Escherichia coli system for cell-free synthesis of selectively N-l
Optimization of an Escherichia coli system for cell-free synthesis of selectively N-labelled proteins for rapid analysis by NMR spectroscopy. Related Articles Optimization of an Escherichia coli system for cell-free synthesis of selectively N-labelled proteins for rapid analysis by NMR spectroscopy. Eur J Biochem. 2004 Oct;271(20):4084-93 Authors: Ozawa K, Headlam MJ, Schaeffer PM, Henderson BR, Dixon NE, Otting G Cell-free protein synthesis offers rapid access to proteins that are selectively labelled with amino acids and suitable for...
nmrlearner Journal club 0 11-24-2010 10:01 PM
[NMR paper] NMR structure of ribonuclease HI from Escherichia coli.
NMR structure of ribonuclease HI from Escherichia coli. Related Articles NMR structure of ribonuclease HI from Escherichia coli. Biol Pharm Bull. 2000 Oct;23(10):1147-52 Authors: Fujiwara M, Kato T, Yamazaki T, Yamasaki K, Nagayam K The solution structure of ribonuclease HI (RNase HI) from Escherichia coli (E. coli), a protein of 155 residues, was determined. Three-dimensional nuclear Overhauser enhancement spectroscopy (NOESY) was used to obtain 1,424 distance constraints between individually assigned polypeptide chain hydrogen atoms....
nmrlearner Journal club 0 11-19-2010 08:29 PM
[NMR paper] Glucose transporter of Escherichia coli: NMR characterization of the phosphocysteine
Glucose transporter of Escherichia coli: NMR characterization of the phosphocysteine form of the IIB(Glc) domain and its binding interface with the IIA(Glc) subunit. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-acspubs.jpg Related Articles Glucose transporter of Escherichia coli: NMR characterization of the phosphocysteine form of the IIB(Glc) domain and its binding interface with the IIA(Glc) subunit. Biochemistry. 1997 Jun 17;36(24):7408-17 Authors: Gemmecker G, Eberstadt M, Buhr A, Lanz R, Grdadolnik SG, Kessler H, Erni B...
nmrlearner Journal club 0 08-22-2010 03:03 PM
[NMR paper] The NMR determination of the IIA(mtl) binding site on HPr of the Escherichia coli pho
The NMR determination of the IIA(mtl) binding site on HPr of the Escherichia coli phosphoenol pyruvate-dependent phosphotransferase system. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles The NMR determination of the IIA(mtl) binding site on HPr of the Escherichia coli phosphoenol pyruvate-dependent phosphotransferase system. FEBS Lett. 1993 Jan 2;315(1):11-5 Authors: van Nuland NA, Kroon GJ, Dijkstra K, Wolters GK, Scheek RM, Robillard GT The region of the surface of...
nmrlearner Journal club 0 08-21-2010 11:53 PM
[NMR paper] NMR studies of the activation of the Escherichia coli trp repressor.
NMR studies of the activation of the Escherichia coli trp repressor. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif Related Articles NMR studies of the activation of the Escherichia coli trp repressor. Eur J Biochem. 1991 Nov 1;201(3):569-79 Authors: Hyde EI, Ramesh V, Frederick R, Roberts GC The Escherichia coli trp repressor binds to the trp operator in the presence of tryptophan, thereby inhibiting tryptophan biosynthesis. Tryptophan analogues...
nmrlearner Journal club 0 08-21-2010 11:12 PM
[NMR paper] NMR studies of the activation of the Escherichia coli trp repressor.
NMR studies of the activation of the Escherichia coli trp repressor. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif Related Articles NMR studies of the activation of the Escherichia coli trp repressor. Eur J Biochem. 1991 Nov 1;201(3):569-79 Authors: Hyde EI, Ramesh V, Frederick R, Roberts GC The Escherichia coli trp repressor binds to the trp operator in the presence of tryptophan, thereby inhibiting tryptophan biosynthesis. Tryptophan analogues...
nmrlearner Journal club 0 08-21-2010 11:12 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 08:52 PM.


Map