BioNMR

BioNMR (http://www.bionmr.com/forum/)
-   Journal club (http://www.bionmr.com/forum/journal-club-9/)
-   -   [NMR paper] Refolding of cold denatured barstar induced by radio frequency heating - new method to study protein folding by real-time NMR spectroscopy. (http://www.bionmr.com/forum/journal-club-9/refolding-cold-denatured-barstar-induced-radio-frequency-heating-new-method-study-protein-folding-real-time-nmr-spectroscopy-27369/)

nmrlearner 08-04-2020 12:56 PM

Refolding of cold denatured barstar induced by radio frequency heating - new method to study protein folding by real-time NMR spectroscopy.
 
Refolding of cold denatured barstar induced by radio frequency heating - new method to study protein folding by real-time NMR spectroscopy.

Related Articles Refolding of cold denatured barstar induced by radio frequency heating - new method to study protein folding by real-time NMR spectroscopy.

Angew Chem Int Ed Engl. 2020 Aug 03;:

Authors: Pintér G, Schwalbe H

Abstract
The C40A/C82A double mutant of barstar has been shown to undergo cold denaturation above the water freezing point. By rapidly applying radio frequency power to lossy aqueous samples, refolding of barstar from its cold denatured state can be followed by real-time NMR spectroscopy. Since temperature-induced unfolding and refolding is reversible for this double mutant, multiple cycling can be utilized to obtain 2D real-time NMR data. Barstar contains two proline residues that adopt a mix of cis and trans conformations in the low temperature-unfolded state, which can potentially induce multiple folding pathways. The high time resolution real-time 2D-NMR measurements reported here show evidence for multiple folding pathways related to proline isomerization, and stable intermediates are populated. By application of advanced heating cycles and state-correlated spectroscopy, an alternative folding pathway circumventing the rate limiting cis-trans isomerization could be observed. The kinetic data revealed intermediates on both, the slow and the fast folding pathway.


PMID: 32744407 [PubMed - as supplied by publisher]



More...


All times are GMT. The time now is 11:51 PM.

Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Search Engine Friendly URLs by vBSEO 3.6.0
Copyright, BioNMR.com, 2003-2013