BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 11-24-2010, 08:58 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,135
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Reconstructing NMR spectra of "invisible" excited protein states using HSQC and HMQC

Reconstructing NMR spectra of "invisible" excited protein states using HSQC and HMQC experiments.

Related Articles Reconstructing NMR spectra of "invisible" excited protein states using HSQC and HMQC experiments.

J Am Chem Soc. 2002 Oct 16;124(41):12352-60

Authors: Skrynnikov NR, Dahlquist FW, Kay LE

Carr-Purcell-Meiboom-Gill (CPMG) relaxation measurements employing trains of 180 degrees pulses with variable pulse spacing provide valuable information about systems undergoing millisecond-time-scale chemical exchange. Fits of the CPMG relaxation dispersion profiles yield rates of interconversion, relative populations, and absolute values of chemical shift differences between the exchanging states, |Deltaomega|. It is shown that the sign of Deltaomega that is lacking from CPMG dispersion experiments can be obtained from a comparison of chemical shifts in the indirect dimensions in either a pair of HSQC (heteronuclear single quantum coherence) spectra recorded at different magnetic fields or HSQC and HMQC (heteronuclear multiple quantum coherence) spectra obtained at a single field. The methodology is illustrated with an application to a cavity mutant of T4 lysozyme in which a leucine at position 99 has been replaced by an alanine, giving rise to exchange between ground state and excited state conformations with a rate on the order of 1450 s(-1) at 25 degrees C.

PMID: 12371879 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Structure determination in "shiftless" solid state NMR of oriented protein samples.
Structure determination in "shiftless" solid state NMR of oriented protein samples. Structure determination in "shiftless" solid state NMR of oriented protein samples. J Magn Reson. 2011 Jul 6; Authors: Yin Y, Nevzorov AA An efficient formalism for calculating protein structures from oriented-sample NMR data in the torsion-angle space is presented. Angular anisotropies of the NMR observables are treated by utilizing an irreducible spherical basis of rotations. An intermediate rotational transformation is introduced that greatly speeds up...
nmrlearner Journal club 0 07-12-2011 06:23 PM
[NMRpipe Yahoo group] Re: Convering Varian's "S3" spectra
Re: Convering Varian's "S3" spectra Have a look in the NMRPipe script library graciously maintained by Dr. Ryan McKay and the staff of NANUC ... www.nanuc.ca ... while you're at the web site, you More...
NMRpipe Yahoo group news News from other NMR forums 0 03-09-2011 04:19 AM
[NMRpipe Yahoo group] Convering Varian's "S3" spectra
Convering Varian's "S3" spectra Hello all. I wondering if anyone has conversion scripts for the "spin-state-selective" pulse sequences in Varian's Biopack. These pulse sequences are named More...
NMRpipe Yahoo group news News from other NMR forums 0 03-08-2011 04:10 PM
[NMR tweet] How is "Tyrannosaurus" related to "Nuclear Magnetic Resonance"? http://www.threewiki.com/60YeHE @threewiki
How is "Tyrannosaurus" related to "Nuclear Magnetic Resonance"? http://www.threewiki.com/60YeHE @threewiki Published by Jakob7 (Jakob Baumhardt) on 2010-12-04T05:24:13Z Source: Twitter
nmrlearner Twitter NMR 0 12-04-2010 05:30 AM
[NMR paper] Lanthanide ions bind specifically to an added "EF-hand" and orient a membrane protein
Lanthanide ions bind specifically to an added "EF-hand" and orient a membrane protein in micelles for solution NMR spectroscopy. Related Articles Lanthanide ions bind specifically to an added "EF-hand" and orient a membrane protein in micelles for solution NMR spectroscopy. J Magn Reson. 2000 Oct;146(2):381-4 Authors: Ma C, Opella SJ Twelve amino acid residues corresponding to an "EF-hand" calcium-binding site were added to the N-terminus of a protein, providing a specific lanthanide ion binding that weakly orients the protein in solution. A...
nmrlearner Journal club 0 11-19-2010 08:29 PM
Postdoctoral Position "Solution Dynamics of Protein Kinases" in New York
Postdoctoral Position "Solution Dynamics of Protein Kinases" in New York A postdoctoral position to study the solution dynamics and structure of protein kinases is available on a NIH funded project (REF#: HS-R-6453-10-08-S). Our group is interested in how static and dynamic changes of protein structure affect the activity of protein kinases. We combine X-ray crystallography, NMR and ligand binding kinetics with collaborative molecular dynamic studies (See e.g. ref 1 and 2). Our research group is located at Stony Brook University in a highly interactive environment with the New York...
nmrlearner Job marketplace 0 08-21-2010 05:17 AM
Postdoctoral Position "Solution Dynamics of Protein Kinases" in New York
Postdoctoral Position "Solution Dynamics of Protein Kinases" in New York A postdoctoral position to study the solution dynamics and structure of protein kinases is available on a NIH funded project (REF#: HS-R-6453-10-08-S). Our group is interested in how static and dynamic changes of protein structure affect the activity of protein kinases. We combine X-ray crystallography, NMR and ligand binding kinetics with collaborative molecular dynamic studies (See e.g. ref 1 and 2). Our research group is located at Stony Brook University in a highly interactive environment with the New York...
nmrlearner Job marketplace 0 08-21-2010 05:14 AM
Using relaxation dispersion NMR spectroscopy to determine structures of excited, invisible protein states
Using relaxation dispersion NMR spectroscopy to determine structures of excited, invisible protein states D. Flemming Hansen, Pramodh Vallurupalli and Lewis E. Kay Journal of Biomolecular NMR; 2008; 41(3); pp 113 - 120 Abstract: Currently the main focus of structural biology is the determination of static three-dimensional representations of biomolecules that for the most part correspond to low energy (ground state) conformations. However, it is becoming increasingly well recognized that higher energy structures often play important roles in function as well. Because these conformers...
daniel Journal club 0 08-03-2008 03:16 AM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 07:33 AM.


Map