BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 05-03-2017, 06:47 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,135
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Recent Advances in Parallel Imaging for MRI

Recent Advances in Parallel Imaging for MRI


Publication date: Available online 2 May 2017
Source:Progress in Nuclear Magnetic Resonance Spectroscopy

Author(s): Jesse Hamilton, Dominique Franson, Nicole Seiberlich

Magnetic Resonance Imaging (MRI) is an essential technology in modern medicine. However, one of its main drawbacks is the long scan time needed to localize the MR signal in space to generate an image. This review article summarizes some basic principles and recent developments in parallel imaging, a class of image reconstruction techniques for shortening scan time. First, the fundamentals of MRI data acquisition are covered, including the concepts of k-space, undersampling, and aliasing. It is demonstrated that scan time can be reduced by sampling a smaller number of phase encoding lines in k-space; however, without further processing, the resulting images will be degraded by aliasing artifacts. Nearly all modern clinical scanners acquire data from multiple independent receiver coil arrays. Parallel imaging methods exploit properties of these coil arrays to separate aliased pixels in the image domain or to estimate missing k-space data using knowledge of nearby acquired k-space points. Three parallel imaging methods—SENSE, GRAPPA, and SPIRiT—are described in detail, since they are employed clinically and form the foundation for more advanced methods. These techniques can be extended to non-Cartesian sampling patterns, where the collected k-space points do not fall on a rectangular grid. Non-Cartesian acquisitions have several beneficial properties, the most important being the appearance of incoherent aliasing artifacts. Recent advances in simultaneous multi-slice imaging are presented next, which use parallel imaging to disentangle images of several slices that have been acquired at once. Parallel imaging can also be employed to accelerate 3D MRI, in which a contiguous volume is scanned rather than sequential slices. Another class of phase-constrained parallel imaging methods takes advantage of both image magnitude and phase to achieve better reconstruction performance. Finally, some applications are presented of parallel imaging being used to accelerate MR Spectroscopic Imaging.
Graphical abstract








More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Recent advances in application of 27Al NMR spectroscopy to materials science
Recent advances in application of 27Al NMR spectroscopy to materials science Publication date: May 2016 Source:Progress in Nuclear Magnetic Resonance Spectroscopy, Volumes 94–95</br> Author(s): Mohamed Haouas, Francis Taulelle, Charlotte Martineau</br> Valuable information about the local environment of the aluminum nucleus can be obtained through 27Al Nuclear Magnetic Resonance (NMR) parameters like the isotropic chemical shift, scalar and quadrupolar coupling constants, and relaxation rate. With nearly 250 scientific articles per year dealing with 27Al NMR...
nmrlearner Journal club 0 04-09-2016 03:54 AM
[NMR paper] Recent advances in magic angle spinning solid state NMR of membrane proteins.
Recent advances in magic angle spinning solid state NMR of membrane proteins. Recent advances in magic angle spinning solid state NMR of membrane proteins. Prog Nucl Magn Reson Spectrosc. 2014 Oct;82C:1-26 Authors: Wang S, Ladizhansky V Abstract Membrane proteins mediate many critical functions in cells. Determining their three-dimensional structures in the native lipid environment has been one of the main objectives in structural biology. There are two major NMR methodologies that allow this objective to be accomplished....
nmrlearner Journal club 0 12-03-2014 04:05 PM
Recent advances in magic angle spinning solid state NMR of membrane proteins
From The DNP-NMR Blog: Recent advances in magic angle spinning solid state NMR of membrane proteins Wang, S. and V. Ladizhansky, Recent advances in magic angle spinning solid state NMR of membrane proteins. Prog. NMR. Spec., 2014. 82(0): p. 1-26. http://www.sciencedirect.com/science/article/pii/S0079656514000478
nmrlearner News from NMR blogs 0 08-29-2014 05:36 PM
Recent advances in magic angle spinning solid state NMR of membrane proteins
Recent advances in magic angle spinning solid state NMR of membrane proteins Publication date: Available online 26 July 2014 Source:Progress in Nuclear Magnetic Resonance Spectroscopy</br> Author(s): Shenlin Wang , Vladimir Ladizhansky</br> Membrane proteins mediate many critical functions in cells. Determining their three-dimensional structures in the native lipid environment has been one of the main objectives in structural biology. There are two major NMR methodologies that allow this objective to be accomplished. Oriented sample NMR, which can be applied to...
nmrlearner Journal club 0 07-27-2014 01:05 AM
[NMR paper] Recent advances in computational predictions of NMR parameters for the structure elucidation of carbohydrates: methods and limitations.
Recent advances in computational predictions of NMR parameters for the structure elucidation of carbohydrates: methods and limitations. Related Articles Recent advances in computational predictions of NMR parameters for the structure elucidation of carbohydrates: methods and limitations. Chem Soc Rev. 2013 Jul 25; Authors: Toukach FV, Ananikov VP Abstract All living systems are comprised of four fundamental classes of macromolecules - nucleic acids, proteins, lipids, and carbohydrates (glycans). Glycans play a unique role of joining three...
nmrlearner Journal club 0 07-28-2013 07:46 PM
[NMR tweet] RT @IOP_NANO: Force-detected nuclear magnetic resonance: recent advances and future c
RT @IOP_NANO: Force-detected nuclear magnetic resonance: recent advances and future challenges http://bit.ly/db9hhF #nanotechnology Published by NJPhysics (NJP) on 2010-11-11T22:29:45Z Source: Twitter
nmrlearner Twitter NMR 0 11-11-2010 11:11 PM
[NMR tweet] RT @IOP_NANO: Force-detected nuclear magnetic resonance: recent advances and future c
RT @IOP_NANO: Force-detected nuclear magnetic resonance: recent advances and future challenges http://bit.ly/db9hhF #nanotechnology Published by nanogrupo (Nanoscience) on 2010-11-11T13:21:27Z Source: Twitter
nmrlearner Twitter NMR 0 11-11-2010 01:34 PM
Force-detected nuclear magnetic resonance: recent advances and future challenges http
Force-detected nuclear magnetic resonance: recent advances and future challenges http://bit.ly/db9hhF #nanotechnology Published by IOP_NANO (IOP NANOTECHNOLOGY) on 2010-11-11T13:20:07Z Source: Twitter
nmrlearner Journal club 0 11-11-2010 01:34 PM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 07:03 AM.


Map