BioNMR

BioNMR (http://www.bionmr.com/forum/)
-   Journal club (http://www.bionmr.com/forum/journal-club-9/)
-   -   [NMR paper] Reactivity of 12-tungstophosphoric acid and its inhibitor potency toward Na(+)/K(+)-ATPase: A combined (31)P NMR study, ab initio calculations and crystallographic analysis. (http://www.bionmr.com/forum/journal-club-9/reactivity-12-tungstophosphoric-acid-its-inhibitor-potency-toward-na-k-atpase-combined-31-p-nmr-study-ab-initio-calculations-crystallographic-analysis-25024/)

nmrlearner 09-05-2017 12:41 PM

Reactivity of 12-tungstophosphoric acid and its inhibitor potency toward Na(+)/K(+)-ATPase: A combined (31)P NMR study, ab initio calculations and crystallographic analysis.
 
Reactivity of 12-tungstophosphoric acid and its inhibitor potency toward Na(+)/K(+)-ATPase: A combined (31)P NMR study, ab initio calculations and crystallographic analysis.

Related Articles Reactivity of 12-tungstophosphoric acid and its inhibitor potency toward Na(+)/K(+)-ATPase: A combined (31)P NMR study, ab initio calculations and crystallographic analysis.

J Inorg Biochem. 2017 Aug 26;176:90-99

Authors: Bošnjakovi?-Pavlovi? N, Bajuk-Bogdanovi? D, Zakrzewska J, Yan Z, Holclajtner-Antunovi? I, Gillet JM, Spasojevi?-de Biré A

Abstract
Influence of 12-tungstophosphoric acid (WPA) on conversion of adenosine triphosphate (ATP) to adenosine diphosphate (ADP) in the presence of Na(+)/K(+)-ATPase was monitored by (31)P NMR spectroscopy. It was shown that WPA exhibits inhibitory effect on Na(+)/K(+)-ATPase activity. In order to study WPA reactivity and intermolecular interactions between WPA oxygen atoms and different proton donor types (D=O, N, C), we have considered data for WPA based compounds from the Cambridge Structural Database (CSD), the Crystallographic Open Database (COD) and the Inorganic Crystal Structure Database (ICSD). Binding properties of Keggin's anion in biological systems are illustrated using Protein Data Bank (PDB). This work constitutes the first determination of theoretical Bader charges on polyoxotungstate compound via the Atom In Molecule theory. An analysis of electrostatic potential maps at the molecular surface and charge of WPA, resulting from DFT calculations, suggests that the preferred protonation site corresponds to WPA bridging oxygen. These results enlightened WPA chemical reactivity and its potential biological applications such as the inhibition of the ATPase activity.


PMID: 28869855 [PubMed - as supplied by publisher]



More...


All times are GMT. The time now is 07:24 PM.

Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Search Engine Friendly URLs by vBSEO 3.6.0
Copyright, BioNMR.com, 2003-2013