BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 12-15-2015, 08:09 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,187
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Rapid NMR assignments of proteins using optimized combinatorial selective unlabeling.

Rapid NMR assignments of proteins using optimized combinatorial selective unlabeling.

Rapid NMR assignments of proteins using optimized combinatorial selective unlabeling.

Chembiochem. 2015 Dec 10;

Authors: Atreya HS, Dubey A, Jaipuria G, Kadumuri RV, Vadrevu R

Abstract
A new approach for rapid resonance assignments in proteins based on amino acid selective unlabeling is presented. The method involves choosing a set of multiple amino acid types for selective unlabeling and identifying specific tri-peptides surrounding the labeled residues using two-dimensional (2D) NMR spectra in a combinatorial manner. It is shown that a 2D [15N-1H] HSQC spectrum along with two 2D spectra can yield ~50% assignments directly. The methodology is applicable to deuterated proteins and was applied to two systems: an intrinsically disordered protein (12 kDa) and 29 kDa (268 residues) ?-subunit of Escherichia coli tryptophan synthase, presenting a challenging case with spectral overlaps and missing peaks. Taken together, the method can augment conventional approaches and/or will be useful for applications such as identifying active-site residues, residues involved in ligand binding or protein-protein interactions even prior to complete resonance assignments.


PMID: 26662553 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Amino Acid Selective Unlabeling in Protein NMR Spectroscopy.
Amino Acid Selective Unlabeling in Protein NMR Spectroscopy. Related Articles Amino Acid Selective Unlabeling in Protein NMR Spectroscopy. Methods Enzymol. 2015;565:167-189 Authors: Prasanna C, Dubey A, Atreya HS Abstract Three-dimensional structure determination of proteins by NMR requires the acquisition of multidimensional spectra followed by assignment of chemical shifts to the respective nuclei. In order to speed up this process, resonances corresponding to individual amino acid types are often selectively identified...
nmrlearner Journal club 0 11-19-2015 05:22 PM
[NMR paper] Optimized co-solute paramagnetic relaxation enhancement for the rapid NMR analysis of a highly fibrillogenic peptide.
Optimized co-solute paramagnetic relaxation enhancement for the rapid NMR analysis of a highly fibrillogenic peptide. Optimized co-solute paramagnetic relaxation enhancement for the rapid NMR analysis of a highly fibrillogenic peptide. J Biomol NMR. 2015 Mar 28; Authors: Oktaviani NA, Risør MW, Lee YH, Megens RP, de Jong DH, Otten R, Scheek RM, Enghild JJ, Nielsen NC, Ikegami T, Mulder FA Abstract Co-solute paramagnetic relaxation enhancement (PRE) is an attractive way to speed up data acquisition in NMR spectroscopy by...
nmrlearner Journal club 0 03-31-2015 07:17 PM
Optimized co-solute paramagnetic relaxation enhancement for the rapid NMR analysis of a highly fibrillogenic peptide
Optimized co-solute paramagnetic relaxation enhancement for the rapid NMR analysis of a highly fibrillogenic peptide Abstract Co-solute paramagnetic relaxation enhancement (PRE) is an attractive way to speed up data acquisition in NMR spectroscopy by shortening the T 1 relaxation time of the nucleus of interest and thus the necessary recycle delay. Here, we present the rationale to utilize high-spin iron(III) as the optimal transition metal for this purpose and characterize the properties of its neutral chelate form...
nmrlearner Journal club 0 03-27-2015 11:59 PM
Amino acid selective unlabeling for sequence specific resonance assignments in proteins
Amino acid selective unlabeling for sequence specific resonance assignments in proteins Abstract Sequence specific resonance assignment constitutes an important step towards high-resolution structure determination of proteins by NMR and is aided by selective identification and assignment of amino acid types. The traditional approach to selective labeling yields only the chemical shifts of the particular amino acid being selected and does not help in establishing a link between adjacent residues along the polypeptide chain, which is important for sequential assignments. An alternative...
nmrlearner Journal club 1 03-20-2012 12:42 AM
Combinatorial triple-selective labeling as a tool to assist membrane protein backbone resonance assignment
Combinatorial triple-selective labeling as a tool to assist membrane protein backbone resonance assignment Abstract Obtaining NMR assignments for slowly tumbling molecules such as detergent-solubilized membrane proteins is often compromised by low sensitivity as well as spectral overlap. Both problems can be addressed by amino-acid specific isotope labeling in conjunction with 15Nâ??1H correlation experiments. In this work an extended combinatorial selective in vitro labeling scheme is proposed that seeks to reduce the number of samples required for assignment. Including three...
nmrlearner Journal club 0 01-21-2012 06:26 PM
Frequency-selective heteronuclear dephasing and selective carbonyl labeling to deconvolute crowded spectra of membrane proteins by magic angle spinning NMR.
Frequency-selective heteronuclear dephasing and selective carbonyl labeling to deconvolute crowded spectra of membrane proteins by magic angle spinning NMR. Frequency-selective heteronuclear dephasing and selective carbonyl labeling to deconvolute crowded spectra of membrane proteins by magic angle spinning NMR. J Magn Reson. 2011 Mar 17; Authors: Traaseth NJ, Veglia G We present a new method that combines carbonyl-selective labeling with frequency-selective heteronuclear recoupling to resolve the spectral overlap of magic angle spinning (MAS) NMR...
nmrlearner Journal club 0 04-13-2011 11:57 PM
[NMR paper] A combinatorial selective labeling method for the assignment of backbone amide NMR re
A combinatorial selective labeling method for the assignment of backbone amide NMR resonances. Related Articles A combinatorial selective labeling method for the assignment of backbone amide NMR resonances. J Am Chem Soc. 2004 Apr 28;126(16):5020-1 Authors: Parker MJ, Aulton-Jones M, Hounslow AM, Craven CJ A combinatorial selective labeling (CSL) method is presented for the assignment of backbone amide NMR resonances, which has a particular application in the identification of protein-ligand interaction sites. The method builds on the dual...
nmrlearner Journal club 0 11-24-2010 09:51 PM
[NMR paper] Selective 'unlabeling' of amino acids in fractionally 13C labeled proteins: an approa
Selective 'unlabeling' of amino acids in fractionally 13C labeled proteins: an approach for stereospecific NMR assignments of CH3 groups in Val and Leu residues. Related Articles Selective 'unlabeling' of amino acids in fractionally 13C labeled proteins: an approach for stereospecific NMR assignments of CH3 groups in Val and Leu residues. J Biomol NMR. 2001 Mar;19(3):267-72 Authors: Atreya HS, Chary KV A novel methodology for stereospecific NMR assignments of methyl (CH3) groups of Val and Leu residues in fractionally 13C-labeled proteins is...
nmrlearner Journal club 0 11-19-2010 08:32 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 11:27 PM.


Map