BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 04-09-2019, 11:33 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 19,204
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default R180T variant of ?-ornithine aminotransferase associated with gyrate atrophy: biochemical, computational, X-RAY and NMR studies provide insight into its catalytic features.

R180T variant of ?-ornithine aminotransferase associated with gyrate atrophy: biochemical, computational, X-RAY and NMR studies provide insight into its catalytic features.

Related Articles R180T variant of ?-ornithine aminotransferase associated with gyrate atrophy: biochemical, computational, X-RAY and NMR studies provide insight into its catalytic features.

FEBS J. 2019 Apr 08;:

Authors: Montioli R, Paiardini A, Giardina G, Zanzoni S, Cutruzzola F, Cellini B, Voltattorni CB

Abstract
Among the over 50 gyrate atrophy-causing mutations of ornithine ?-aminotransferase (OAT), the R180T involves an active site residue located at the dimer interface, which in the crystal structure of OAT complexed with 5-fluoromethylornithine engages a salt bridge with the ?-carboxylate of the substrate analogue. Starting from the previous finding that no transaminase activity was detected in CHO-K1 cells expressing the R180T variant, here we try to shed light at the protein level on the structural and/or functional defects of the R180T variant. To this aim, the variant has been cloned, expressed, purified, and characterized by a combination of biochemical and structural studies. Although the R180T variant shares a similar overall conformation with the wild-type, its crystal structure solved at 1.8 ? reveals slight structural alterations at the active site and at the dimeric interface. These changes are consistent with the spectroscopic and kinetic results, indicating that the variant, as compared with the wild-type OAT, shows (i) an increased Km value for L-ornithine, (ii) an altered pyridoxal 5'-phosphate binding mode and affinity, and (iii) an increased thermostability. In addition, the R180T mutant exhibits a remarkable loss of catalytic activity and is endowed with the ability to catalyze not only the ?-transamination, but also, albeit to a lesser extent, the ?-transamination of L-ornithine. Overall, these data indicate that the slight structural changes caused by the R180T mutation, preventing a proper collocation of L-ornithine at the active site of OAT, are responsible for the notable reduction of the catalytic efficiency. This article is protected by copyright. All rights reserved.


PMID: 30957963 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Optimization and 13CH3 methionine labeling of a signaling competent neurotensin receptor 1 variant for NMR studies.
Optimization and 13CH3 methionine labeling of a signaling competent neurotensin receptor 1 variant for NMR studies. Optimization and 13CH3 methionine labeling of a signaling competent neurotensin receptor 1 variant for NMR studies. Biochim Biophys Acta. 2018 Mar 26;: Authors: Bumbak F, Keen AC, Gunn NJ, Gooley PR, Bathgate RAD, Scott DJ Abstract Neurotensin is a 13-residue peptide that acts as a neuromodulator of classical neurotransmitters such as dopamine and glutamate in the mammalian central nervous system, mainly by...
nmrlearner Journal club 0 03-30-2018 06:40 PM
Zinc-binding structure of a catalytic amyloid from solid-state NMR [Biophysics and Computational Biology]
Zinc-binding structure of a catalytic amyloid from solid-state NMR Myungwoon Lee, Tuo Wang, Olga V. Makhlynets, Yibing Wu, Nicholas F. Polizzi, Haifan Wu, Pallavi M. Gosavi, Jan Stohr, Ivan V. Korendovych, William F. DeGrado, Mei Hong... Date: 2017-06-13 Throughout biology, amyloids are key structures in both functional proteins and the end product of pathologic protein misfolding. Amyloids might also represent an early precursor in the evolution of life because of their small molecular size and their ability to self-purify and catalyze chemical reactions. They also provide attractive...
nmrlearner Journal club 0 06-13-2017 09:46 PM
[NMR paper] Parkin prevents cortical atrophy and A?-induced alterations of brain metabolism: 像C NMR and magnetic resonance imaging studies in AD models.
Parkin prevents cortical atrophy and A?-induced alterations of brain metabolism: 像C NMR and magnetic resonance imaging studies in AD models. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Parkin prevents cortical atrophy and A?-induced alterations of brain metabolism: 像C NMR and magnetic resonance imaging studies in AD models. Neuroscience. 2012 Dec 6;225:22-34 Authors: Algarzae N, Hebron M, Miessau M, Moussa CE Abstract Alzheimer's disease (AD)...
nmrlearner Journal club 0 04-17-2013 08:15 PM
Solid-State NMR Measurements of Asymmetric Dipolar Couplings Provide Insight into Protein Side-Chain Motion.
Solid-State NMR Measurements of Asymmetric Dipolar Couplings Provide Insight into Protein Side-Chain Motion. Solid-State NMR Measurements of Asymmetric Dipolar Couplings Provide Insight into Protein Side-Chain Motion. Angew Chem Int Ed Engl. 2011 Sep 16; Authors: Schanda P, Huber M, Boisbouvier J, Meier BH, Ernst M PMID: 21928443
nmrlearner Journal club 0 09-20-2011 03:10 PM
Solid-State NMR Measurements of Asymmetric Dipolar Couplings Provide Insight into Protein Side-Chain Motion.
Solid-State NMR Measurements of Asymmetric Dipolar Couplings Provide Insight into Protein Side-Chain Motion. Solid-State NMR Measurements of Asymmetric Dipolar Couplings Provide Insight into Protein Side-Chain Motion. Angew Chem Int Ed Engl. 2011 Sep 14; Authors: Schanda P, Huber M, Boisbouvier J, Meier BH, Ernst M PMID: 21915969
nmrlearner Journal club 0 09-15-2011 08:31 PM
[NMR paper] Biochemical characterization and NMR studies of the nucleotide-binding domain 1 of mu
Biochemical characterization and NMR studies of the nucleotide-binding domain 1 of multidrug-resistance-associated protein 1: evidence for interaction between ATP and Trp653. Related Articles Biochemical characterization and NMR studies of the nucleotide-binding domain 1 of multidrug-resistance-associated protein 1: evidence for interaction between ATP and Trp653. Biochem J. 2003 Dec 15;376(Pt 3):749-56 Authors: Ramaen O, Masscheleyn S, Duffieux F, Pamlard O, Oberkampf M, Lallemand JY, Stoven V, Jacquet E Multidrug-resistance-associated...
nmrlearner Journal club 0 11-24-2010 09:16 PM
Solid-state NMR and SAXS studies provide a structural basis for the activation of alp
Solid-state NMR and SAXS studies provide a structural basis for the activation of alphaB-crystallin oligomers. Related Articles Solid-state NMR and SAXS studies provide a structural basis for the activation of alphaB-crystallin oligomers. Nat Struct Mol Biol. 2010 Aug 29; Authors: Jehle S, Rajagopal P, Bardiaux B, Markovic S, K羹hne R, Stout JR, Higman VA, Klevit RE, van Rossum BJ, Oschkinat H The small heat shock protein alphaB-crystallin (alphaB) contributes to cellular protection against stress. For decades, high-resolution structural studies on...
nmrlearner Journal club 0 08-31-2010 09:42 PM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2019, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 01:00 AM.


Map