BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 12-05-2017, 07:35 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,137
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Quantitative Study of the Oligomerization of YeastPrion Sup35NM Proteins

Quantitative Study of the Oligomerization of YeastPrion Sup35NM Proteins



Biochemistry
DOI: 10.1021/acs.biochem.7b00966



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Label-free quantitative 1H NMR spectroscopy to study low-affinity ligand-protein interactions in solution: A contribution to the mechanism of polyphenol-mediated astringency.
Label-free quantitative 1H NMR spectroscopy to study low-affinity ligand-protein interactions in solution: A contribution to the mechanism of polyphenol-mediated astringency. Label-free quantitative 1H NMR spectroscopy to study low-affinity ligand-protein interactions in solution: A contribution to the mechanism of polyphenol-mediated astringency. PLoS One. 2017;12(9):e0184487 Authors: Delius J, Frank O, Hofmann T Abstract Nuclear magnetic resonance (NMR) spectroscopy is well-established in assessing the binding affinity between...
nmrlearner Journal club 0 09-09-2017 06:59 PM
Quantitative measurement of exchange dynamics in proteins via 13 C relaxation dispersion of 13 CHD 2 -labeled samples
Quantitative measurement of exchange dynamics in proteins via 13 C relaxation dispersion of 13 CHD 2 -labeled samples Abstract Methyl groups have emerged as powerful probes of protein dynamics with timescales from picoseconds to seconds. Typically, studies involving high molecular weight complexes exploit 13CH3- or 13CHD2-labeling in otherwise highly deuterated proteins. The 13CHD2 label offers the unique advantage of providing 13C, 1H and 2H spin probes, however a disadvantage has been the lack of an experiment to record 13C...
nmrlearner Journal club 0 06-02-2016 02:11 AM
[NMR paper] Structural Basis for TatA Oligomerization: An NMR Study of Escherichia coli TatA Dimeric Structure.
Structural Basis for TatA Oligomerization: An NMR Study of Escherichia coli TatA Dimeric Structure. Related Articles Structural Basis for TatA Oligomerization: An NMR Study of Escherichia coli TatA Dimeric Structure. PLoS One. 2014;9(8):e103157 Authors: Zhang Y, Hu Y, Li H, Jin C Abstract Many proteins are transported across lipid membranes by protein translocation systems in living cells. The twin-arginine transport (Tat) system identified in bacteria and plant chloroplasts is a unique system that transports proteins across...
nmrlearner Journal club 0 08-05-2014 04:47 PM
Journal Highlight: Quantitative NMR: An applicable method for quantitative analysis of medicinal plant extracts and herbal products
Journal Highlight: Quantitative NMR: An applicable method for quantitative analysis of medicinal plant extracts and herbal products http://www.spectroscopynow.com/common/images/thumbnails/13abcca009b.jpgA quantitative NMR method has been reported for quantitative analysis of three medicinal plant extracts and their herbal products without the need of authentic standards. Source: Spectroscopynow.com
nmrlearner General 0 02-03-2013 08:49 AM
Conformational analysis by quantitative NOE measurements of the β-proton pairs across individual disulfide bonds in proteins
Conformational analysis by quantitative NOE measurements of the β-proton pairs across individual disulfide bonds in proteins Abstract NOEs between the β-protons of cysteine residues across disulfide bonds in proteins provide direct information on the connectivities and conformations of these important cross-links, which are otherwise difficult to investigate. With conventional -proteins, however, fast spin diffusion processes mediated by strong dipolar interactions between geminal β-protons prohibit the quantitative measurements and thus the analyses of long-range NOEs across...
nmrlearner Journal club 0 12-05-2011 04:07 AM
[NMR paper] Quantitative NMR studies of high molecular weight proteins: application to domain ori
Quantitative NMR studies of high molecular weight proteins: application to domain orientation and ligand binding in the 723 residue enzyme malate synthase G. Related Articles Quantitative NMR studies of high molecular weight proteins: application to domain orientation and ligand binding in the 723 residue enzyme malate synthase G. J Mol Biol. 2003 Apr 11;327(5):1121-33 Authors: Tugarinov V, Kay LE A high-resolution multidimensional NMR study of ligand-binding to Escherichia coli malate synthase G (MSG), a 723-residue monomeric enzyme (81.4...
nmrlearner Journal club 0 11-24-2010 09:01 PM
[NMR paper] Oligomerization of the EGF receptor transmembrane domain: a 2H NMR study in lipid bil
Oligomerization of the EGF receptor transmembrane domain: a 2H NMR study in lipid bilayers. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-acspubs.jpg Related Articles Oligomerization of the EGF receptor transmembrane domain: a 2H NMR study in lipid bilayers. Biochemistry. 1997 Oct 14;36(41):12616-24 Authors: Jones DH, Rigby AC, Barber KR, Grant CW During the course of a previous study by wideline 2H NMR, we noted spectral features suggesting the possibility of monitoring homodimer/oligomer interactions between...
nmrlearner Journal club 0 08-22-2010 05:08 PM
[NMR paper] Quantitative analysis of 1H NMR detected proteins in the rat cerebral cortex in vivo
Quantitative analysis of 1H NMR detected proteins in the rat cerebral cortex in vivo and in vitro. Related Articles Quantitative analysis of 1H NMR detected proteins in the rat cerebral cortex in vivo and in vitro. NMR Biomed. 1993 Jul-Aug;6(4):242-7 Authors: Kauppinen RA, Niskanen T, Hakumäki J, Williams SR Spectral editing experiments were used to quantify CH3 groups from macromolecular species in the chemical shift region from 1.2 to 1.4 ppm of rat cerebrum in vivo. Two peaks centred at 1.22 and 1.40 ppm were revealed when irradiation was...
nmrlearner Journal club 0 08-21-2010 11:53 PM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 12:00 PM.


Map