BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 04-24-2013, 09:48 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,137
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Quantitative Analysis of STD-NMR Spectra of Reversibly Forming Ligand-Receptor Complexes.

Quantitative Analysis of STD-NMR Spectra of Reversibly Forming Ligand-Receptor Complexes.

Related Articles Quantitative Analysis of STD-NMR Spectra of Reversibly Forming Ligand-Receptor Complexes.

Top Curr Chem. 2008;273:15-54

Authors: Krishna NR, Jayalakshmi V

Abstract
We describe our work on the quantitative analysis of STD-NMR spectra of reversibly forming ligand-receptorcomplexes. This analysis is based on the theory of complete relaxation and conformational exchange matrixanalysis of saturation transfer (CORCEMA-ST) effects. As part of this work, we have developed two separateversions of the CORCEMA-ST program. The first version predicts the expected STD intensities for a*givenmodel of a*ligand-protein complex, and compares them quantitatively with the experimental data.This version is very useful for rapidly determining if a*model for a*given ligand-proteincomplex is compatible with the STD-NMR data obtained in solution. It is also useful in determining theoptimal experimental conditions for undertaking the STD-NMR measurements on a*given complex by computersimulations. In the second version of the CORCEMA-ST program, we have implemented a*torsion anglerefinement feature for the bound ligand within the protein binding pocket. In this approach, the globalminimum for the bound ligand conformation is obtained by a*hybrid structure refinement protocol involvingCORCEMA-ST calculation of intensities and simulated annealing refinement of torsion angles of the boundligand using STD-NMR intensities as experimental constraints to minimize a*pseudo-energy function.This procedure is useful in refining and improving the initial models based on crystallography, computerdocking, or other procedures to generate models for the bound ligand within the protein binding pocket compatiblewith solution STD-NMR data. In this chapter we describe the properties of the STD-NMR spectra, includingthe dependence of the intensities on various parameters. We also describe the results of the CORCEMA-STanalyses of experimental STD-NMR data on some ligand-protein complexes to illustrate the quantitativeanalysis of the data using this method. This CORCEMA-ST program is likely to be useful in structure-baseddrug design efforts.


PMID: 23605458 [PubMed]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Journal Highlight: Quantitative NMR: An applicable method for quantitative analysis of medicinal plant extracts and herbal products
Journal Highlight: Quantitative NMR: An applicable method for quantitative analysis of medicinal plant extracts and herbal products http://www.spectroscopynow.com/common/images/thumbnails/13abcca009b.jpgA quantitative NMR method has been reported for quantitative analysis of three medicinal plant extracts and their herbal products without the need of authentic standards. Source: Spectroscopynow.com
nmrlearner General 0 02-03-2013 08:49 AM
Measurement of multiple torsional angles from one-dimensional solid-state NMR spectra: application to the conformational analysis of a ligand in its biological receptor site.
Measurement of multiple torsional angles from one-dimensional solid-state NMR spectra: application to the conformational analysis of a ligand in its biological receptor site. Measurement of multiple torsional angles from one-dimensional solid-state NMR spectra: application to the conformational analysis of a ligand in its biological receptor site. Phys Chem Chem Phys. 2010 Nov 14;12(42):13999-4008 Authors: Edwards R, Madine J, Fielding L, Middleton DA Knowledge of the three-dimensional structure of a ligand in the binding site of its biological...
nmrlearner Journal club 0 02-04-2011 11:34 AM
[NMR paper] Over-expression and purification of isotopically labeled recombinant ligand-binding domain of orphan nuclear receptor human B1-binding factor/human liver receptor homologue 1 for NMR studies.
Over-expression and purification of isotopically labeled recombinant ligand-binding domain of orphan nuclear receptor human B1-binding factor/human liver receptor homologue 1 for NMR studies. Related Articles Over-expression and purification of isotopically labeled recombinant ligand-binding domain of orphan nuclear receptor human B1-binding factor/human liver receptor homologue 1 for NMR studies. Protein Expr Purif. 2006 Jan;45(1):99-106 Authors: Chen X, Tong X, Xie Y, Wang Y, Ma J, Gao D, Wu H, Chen H The human hepatitis B virus enhancer II...
nmrlearner Journal club 0 12-01-2010 06:56 PM
[NMR paper] Solid-state NMR analysis of ligand--receptor interactions reveals an induced misfit i
Solid-state NMR analysis of ligand--receptor interactions reveals an induced misfit in the binding site of isorhodopsin. Related Articles Solid-state NMR analysis of ligand--receptor interactions reveals an induced misfit in the binding site of isorhodopsin. Biochemistry. 2004 Dec 28;43(51):16011-8 Authors: Creemers AF, Bovee-Geurts PH, DeGrip WJ, Lugtenburg J, de Groot HJ Rhodopsin is the photosensitive protein of the rod photoreceptor in the vertebrate retina and is a paradigm for the superfamily of G-protein-coupled receptors (GPCRs)....
nmrlearner Journal club 0 11-24-2010 10:03 PM
[NMR paper] NMR structure of the thromboxane A2 receptor ligand recognition pocket.
NMR structure of the thromboxane A2 receptor ligand recognition pocket. Related Articles NMR structure of the thromboxane A2 receptor ligand recognition pocket. Eur J Biochem. 2004 Jul;271(14):3006-16 Authors: Ruan KH, Wu J, So SP, Jenkins LA, Ruan CH To overcome the difficulty of characterizing the structures of the extracellular loops (eLPs) of G protein-coupled receptors (GPCRs) other than rhodopsin, we have explored a strategy to generate a three-dimensional structural model for a GPCR, the thromboxane A(2) receptor. This three-dimensional...
nmrlearner Journal club 0 11-24-2010 09:51 PM
[NMR paper] Epitope mapping of ligand-receptor interactions by diffusion NMR.
Epitope mapping of ligand-receptor interactions by diffusion NMR. Related Articles Epitope mapping of ligand-receptor interactions by diffusion NMR. J Am Chem Soc. 2002 Aug 28;124(34):9984-5 Authors: Yan J, Kline AD, Mo H, Zartler ER, Shapiro MJ A novel method based on diffusion NMR for the epitope mapping of ligand binding is presented. The intermolecular NOE builds up during a long diffusion period and creates a deviation from the linearity. The ligand proton nearest the protein generates the strongest NOE from protein during the diffusion...
nmrlearner Journal club 0 11-24-2010 08:58 PM
[NMR paper] Dynamic NMR studies of ligand-receptor interactions: design and analysis of a rapidly
Dynamic NMR studies of ligand-receptor interactions: design and analysis of a rapidly exchanging complex of FKBP-12/FK506 with a 24 kDa calcineurin fragment. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles Dynamic NMR studies of ligand-receptor interactions: design and analysis of a rapidly exchanging complex of FKBP-12/FK506 with a 24 kDa calcineurin...
nmrlearner Journal club 0 08-22-2010 02:20 PM
[NMR paper] 1H NMR analysis of fibril-forming peptide fragments of transthyretin.
1H NMR analysis of fibril-forming peptide fragments of transthyretin. Related Articles 1H NMR analysis of fibril-forming peptide fragments of transthyretin. Int J Pept Protein Res. 1994 Oct;44(4):388-98 Authors: Jarvis JA, Kirkpatrick A, Craik DJ Peptide fragments of the protein transthyretin, previously shown to form cross beta-sheet amyloid-like fibrils in vitro, were investigated using 1H 1D and 2D NMR techniques. TTR 10-20, TTR 105-115 as well as a substituted analogue, (TTR 105-115Met111) all formed amyloid-like fibrils readily in 20-30%...
nmrlearner Journal club 0 08-22-2010 03:29 AM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 03:14 PM.


Map