BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 03-16-2021, 06:18 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,135
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Quantifying the thermodynamics of protein unfolding using 2D NMR spectroscopy

Quantifying the thermodynamics of protein unfolding using 2D NMR spectroscopy

A topic that has attracted considerable interest in recent years is the possibility to perform thermodynamic studies of proteins directly in-cell or in complex environments which mimic the cellular interior. Nuclear magnetic resonance (NMR) could be an attractive technique for these studies but its applicability has so far been limited by technical issues. Here, we demonstrate that 2D NMR methods can be successfully applied to measure thermodynamic parameters provided that a suitable choice of...

More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Effect of PEG Architecture on the Hybridization Thermodynamics and Protein Accessibility of PEGylated Oligonucleotides
Effect of PEG Architecture on the Hybridization Thermodynamics and Protein Accessibility of PEGylated Oligonucleotides PEGylation is an attractive approach to modifying oligonucleotides intended for therapeutic purposes. PEG conjugation reduces protein interactions with the oligonucleotide, and helps to overcome their intrinsic biopharmaceutical shortcomings, such as poor enzymatic stability, rapid body clearance, and unwanted immunostimulation. However, the effect of PEG architecture and the manner in which the PEG component interferes with the hybridization of the oligonucleotide...
nmrlearner Journal club 0 12-29-2016 09:23 PM
[NMR paper] A Bayesian approach to quantifying uncertainty from experimental noise in DEER spectroscopy
A Bayesian approach to quantifying uncertainty from experimental noise in DEER spectroscopy Publication date: Available online 2 July 2016 Source:Journal of Magnetic Resonance</br> Author(s): Thomas H. Edwards, Stefan Stoll</br> Double Electron-Electron Resonance (DEER) spectroscopy is a solid-state pulse Electron Paramagnetic Resonance (EPR) experiment that measures distances between unpaired electrons, most commonly between protein-bound spin labels separated by 1.5-8 nm. From the experimental data, a distance distribution P ( r ) is extracted using...
nmrlearner Journal club 0 07-03-2016 10:06 PM
[NMR paper] Monitoring fast reactions by spatially-selective and frequency-shifted continuous NMR spectroscopy: application to rapid-injection protein unfolding.
Monitoring fast reactions by spatially-selective and frequency-shifted continuous NMR spectroscopy: application to rapid-injection protein unfolding. Related Articles Monitoring fast reactions by spatially-selective and frequency-shifted continuous NMR spectroscopy: application to rapid-injection protein unfolding. Chem Commun (Camb). 2013 Mar 12; Authors: Wagner GE, Sakhaii P, Bermel W, Zangger K Abstract The repetition rate of an NMR experiment is usually limited by the longitudinal relaxation times of the investigated molecule. Here we...
nmrlearner Journal club 0 03-14-2013 10:05 PM
Mapping of unfolding states of integral helical membrane proteins by GPS-NMR and scattering techniques: TFE-induced unfolding of KcsA in DDM surfactant
Mapping of unfolding states of integral helical membrane proteins by GPS-NMR and scattering techniques: TFE-induced unfolding of KcsA in DDM surfactant September 2012 Publication year: 2012 Source:Biochimica et Biophysica Acta (BBA) - Biomembranes, Volume 1818, Issue 9</br> </br> Membrane proteins are vital for biological function, and their action is governed by structural properties critically depending on their interactions with the membranes. This has motivated considerable interest in studies of membrane protein folding and unfolding. Here the structural changes...
nmrlearner Journal club 0 02-03-2013 10:13 AM
A Delicate Interplay of Structure, Dynamics, and Thermodynamics for Function: A High Pressure NMR Study of Outer Surface Protein A
A Delicate Interplay of Structure, Dynamics, and Thermodynamics for Function: A High Pressure NMR Study of Outer Surface Protein A 22 February 2012 Publication year: 2012 Source:Biophysical Journal, Volume 102, Issue 4</br> </br> Outer surface protein A (OspA) is a crucial protein in the infection of Borrelia burgdorferi causing Lyme disease. We studied conformational fluctuations of OspA with high-pressure 15N/1H two-dimensional NMR along with high-pressure fluorescence spectroscopy. We found evidence within folded, native OspA for rapid local fluctuations of the...
nmrlearner Journal club 0 02-03-2013 10:13 AM
Quantifying millisecond time-scale exchange in proteins by CPMG relaxation dispersion NMR spectroscopy of side-chain carbonyl groups
Quantifying millisecond time-scale exchange in proteins by CPMG relaxation dispersion NMR spectroscopy of side-chain carbonyl groups Abstract A new pulse sequence is presented for the measurement of relaxation dispersion profiles quantifying millisecond time-scale exchange dynamics of side-chain carbonyl groups in uniformly 13C labeled proteins. The methodology has been tested using the 87-residue colicin E7 immunity protein, Im7, which is known to fold via a partially structured low populated intermediate that interconverts with the folded, ground state on the millisecond time-scale....
nmrlearner Journal club 0 06-20-2011 03:31 PM
[NMR paper] Mechanical unfolding of a titin Ig domain: structure of unfolding intermediate reveal
Mechanical unfolding of a titin Ig domain: structure of unfolding intermediate revealed by combining AFM, molecular dynamics simulations, NMR and protein engineering. Related Articles Mechanical unfolding of a titin Ig domain: structure of unfolding intermediate revealed by combining AFM, molecular dynamics simulations, NMR and protein engineering. J Mol Biol. 2002 Sep 27;322(4):841-9 Authors: Fowler SB, Best RB, Toca Herrera JL, Rutherford TJ, Steward A, Paci E, Karplus M, Clarke J The mechanical unfolding of an immunoglobulin domain from the...
nmrlearner Journal club 0 11-24-2010 08:58 PM
[NMR paper] Thermodynamics of unfolding of ribonuclease A under high pressure. A study by proton
Thermodynamics of unfolding of ribonuclease A under high pressure. A study by proton NMR. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Thermodynamics of unfolding of ribonuclease A under high pressure. A study by proton NMR. J Mol Biol. 1995 Jul 28;250(5):689-94 Authors: Yamaguchi T, Yamada H, Akasaka K Thermodynamic stability of ribonuclease A (6.2 mM pH 1.0, 0.15 M KCl, in 2H2O) has been studied in the pressure range of 1 to 2000 atm and in the temperature range...
nmrlearner Journal club 0 08-22-2010 03:50 AM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 08:51 PM.


Map