BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 01-09-2011, 12:46 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,175
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Protein structure calculation with data imputation: the use of substitute restraints

Protein structure calculation with data imputation: the use of substitute restraints


Abstract The amount of experimental restraints e.g., NOEs is often too small for calculating high quality three-dimensional structures by restrained molecular dynamics. Considering this as a typical missing value problem we propose here a model based data imputation technique that should lead to an improved estimation of the correct structure. The novel automated method implemented in AUREMOL makes a more efficient use of the experimental information to obtain NMR structures with higher accuracy. It creates a large set of substitute restraints that are used either alone or together with the experimental restraints. The new approach was successfully tested on three examples: firstly, the Ras-binding domain of Byr2 from Schizosaccharomyces pombe, the mutant HPr (H15A) from Staphylococcus aureus, and a X-ray structure of human ubiquitin. In all three examples, the quality of the resulting final bundles was improved considerably by the use of additional substitute restraints, as assessed quantitatively by the calculation of RMSD values to the â??trueâ?? structure and NMR R-factors directly calculated from the original NOESY spectra or the published diffraction data.
  • Content Type Journal Article
  • Pages 397-411
  • DOI 10.1007/s10858-009-9379-y
  • Authors
    • Carolina Cano, University of Regensburg Institut für Biophysik und physikalische Biochemie Universitätstr. 31 93053 Regensburg Germany
    • Konrad Brunner, University of Regensburg Institut für Biophysik und physikalische Biochemie Universitätstr. 31 93053 Regensburg Germany
    • Kumaran Baskaran, University of Regensburg Institut für Biophysik und physikalische Biochemie Universitätstr. 31 93053 Regensburg Germany
    • Ralph Elsner, University of Regensburg Institut für Biophysik und physikalische Biochemie Universitätstr. 31 93053 Regensburg Germany
    • Claudia E. Munte, University of Regensburg Institut für Biophysik und physikalische Biochemie Universitätstr. 31 93053 Regensburg Germany
    • Hans Robert Kalbitzer, University of Regensburg Institut für Biophysik und physikalische Biochemie Universitätstr. 31 93053 Regensburg Germany

Source: Journal of Biomolecular NMR
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Impact of (15)N R(2)/R(1) Relaxation Restraints on Molecular Size, Shape, and Bond Vector Orientation for NMR Protein Structure Determination with Sparse Distance Restraints.
Impact of (15)N R(2)/R(1) Relaxation Restraints on Molecular Size, Shape, and Bond Vector Orientation for NMR Protein Structure Determination with Sparse Distance Restraints. Impact of (15)N R(2)/R(1) Relaxation Restraints on Molecular Size, Shape, and Bond Vector Orientation for NMR Protein Structure Determination with Sparse Distance Restraints. J Am Chem Soc. 2011 Apr 4; Authors: Ryabov Y, Schwieters CD, Clore GM (15)N R(2)/R(1) relaxation data contain information on molecular shape and size as well as on bond vector orientations relative to...
nmrlearner Journal club 0 04-06-2011 10:54 AM
Impact of 15N R2/R1 Relaxation Restraints on Molecular Size, Shape, and Bond Vector Orientation for NMR Protein Structure Determination with Sparse Distance Restraints
Impact of 15N R2/R1 Relaxation Restraints on Molecular Size, Shape, and Bond Vector Orientation for NMR Protein Structure Determination with Sparse Distance Restraints Yaroslav Ryabov, Charles D. Schwieters and G. Marius Clore http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja201020c/aop/images/medium/ja-2011-01020c_0002.gif Journal of the American Chemical Society DOI: 10.1021/ja201020c http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/3J1IyCLkQMQ
nmrlearner Journal club 0 04-05-2011 10:37 AM
Structure Calculation from Unambiguous Long-Range Amide and Methyl (1)H-(1)H Distance Restraints for a Microcrystalline Protein with MAS Solid-State NMR Spectroscopy.
Structure Calculation from Unambiguous Long-Range Amide and Methyl (1)H-(1)H Distance Restraints for a Microcrystalline Protein with MAS Solid-State NMR Spectroscopy. Structure Calculation from Unambiguous Long-Range Amide and Methyl (1)H-(1)H Distance Restraints for a Microcrystalline Protein with MAS Solid-State NMR Spectroscopy. J Am Chem Soc. 2011 Mar 24; Authors: Linser R, Bardiaux B, Higman V, Fink U, Reif B Magic-angle spinning (MAS) solid-state NMR becomes an increasingly important tool for the determination of structures of membrane...
nmrlearner Journal club 0 03-26-2011 07:00 PM
Structure Calculation from Unambiguous Long-Range Amide and Methyl 1H-1H Distance Restraints for a Microcrystalline Protein with MAS Solid-State NMR Spectroscopy
Structure Calculation from Unambiguous Long-Range Amide and Methyl 1H-1H Distance Restraints for a Microcrystalline Protein with MAS Solid-State NMR Spectroscopy Rasmus Linser, Benjamin Bardiaux, Victoria Higman, Uwe Fink and Bernd Reif http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja110222h/aop/images/medium/ja-2010-10222h_0004.gif Journal of the American Chemical Society DOI: 10.1021/ja110222h http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/Dh0EBf8PwcY
nmrlearner Journal club 0 03-24-2011 08:02 PM
[NMR paper] Protein structure calculation from NMR data.
Protein structure calculation from NMR data. Related Articles Protein structure calculation from NMR data. Methods Mol Biol. 2002;173:267-83 Authors: Mal TK, Bagby S, Ikura M
nmrlearner Journal club 0 11-24-2010 08:49 PM
[NMR paper] Carbonyl CSA restraints from solution NMR for protein structure refinement.
Carbonyl CSA restraints from solution NMR for protein structure refinement. Related Articles Carbonyl CSA restraints from solution NMR for protein structure refinement. J Am Chem Soc. 2001 Nov 7;123(44):11065-6 Authors: Lipsitz RS, Tjandra N
nmrlearner Journal club 0 11-19-2010 08:44 PM
protein structure calculation
Hi! every one! I wanted to get in contact with people solving the structure of protein by using NMR. I am learning the process and i have many basics problem related with the work. cheers!
premprakash NMR Questions and Answers 0 03-29-2007 02:33 PM
Binding Kd calculation and simulation from NMR data
http://structbio.vanderbilt.edu/chazin/rpa_cell.jpg If you go to this page on Prof. Chazin website, you will find explanation how to calculate Kd from NMR titration and a program to simulate Kd and estimate its error.
nmrlearner Educational web pages 0 11-07-2005 10:41 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 12:44 PM.


Map