BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 03-28-2019, 01:56 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,175
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Protein structure and analysis site-specific observation of the conformational change of a protein with 15N-labeled Tyr residues using NMR.

Protein structure and analysis site-specific observation of the conformational change of a protein with 15N-labeled Tyr residues using NMR.

Related Articles Protein structure and analysis site-specific observation of the conformational change of a protein with 15N-labeled Tyr residues using NMR.

Anal Biochem. 2019 Mar 22;:

Authors: Inaba S, Shiota A, Yoshida T, Oda M

Abstract
One of the reasons it is difficult to analyze protein structural dynamics at atomic resolution using NMR is the molecular size of the protein. The selective amino acid labeling method is one of the effective methods that can solve this problem. In this study, to determine the site-specific conformational change in 3?-hydroxysteroid dehydrogenase from Pseudomonas sp. B-0831 (Ps3?HSD), which forms a dimer composed of two 26 kDa subunits, we expressed and purified 15N-Tyr labeled Ps3?HSD and its mutants, and analyzed the conformational change upon NADH binding. Using the Tyr substituted mutants, we first assigned the respective signals of four Tyr residues. In the titration experiments with NADH, the four Tyr signals changed uniquely; changes in chemical shift and signal broadening were observed. The NADH binding affinity, determined from the plots of the 1H and 15N chemical shift changes, was comparable to those reported previously. Together with the crystal structure information for Ps3?HSD in the NADH-free and -bound states, site-specific conformational changes including environmental changes could be deduced.


PMID: 30910701 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Erratum to: Protein-protein interaction analysis in crude bacterial lysates using combinational method of (19)F site-specific incorporation and (19)F NMR.
Erratum to: Protein-protein interaction analysis in crude bacterial lysates using combinational method of (19)F site-specific incorporation and (19)F NMR. Related Articles Erratum to: Protein-protein interaction analysis in crude bacterial lysates using combinational method of (19)F site-specific incorporation and (19)F NMR. Protein Cell. 2017 Mar 10;: Authors: Li D, Zhang Y, He Y, Zhang C, Wang J, Xiong Y, Zhang L, Liu Y, Shi P, Tian C PMID: 28284007
nmrlearner Journal club 0 03-12-2017 12:32 PM
[NMR paper] Application of Site-Specific Spin Labeling for NMR Detecting Inhibitor-Induced Conformational Change of HIV-1 Reverse Transcriptase.
Application of Site-Specific Spin Labeling for NMR Detecting Inhibitor-Induced Conformational Change of HIV-1 Reverse Transcriptase. Related Articles Application of Site-Specific Spin Labeling for NMR Detecting Inhibitor-Induced Conformational Change of HIV-1 Reverse Transcriptase. ChemMedChem. 2016 Jan 25; Authors: Seetaha S, Yagi-Utsumi M, Yamaguchi T, Ishii K, Hannongbua S, Choowongkomon K, Kato K Abstract Paramagnetism-assisted nuclear magnetic resonance (NMR) techniques can provide long-range structural information...
nmrlearner Journal club 0 01-26-2016 03:40 PM
Site-Specific ?- and ?-Torsion Angle Determination in a Uniformly/Extensively 13C- and 15N-Labeled Peptide
Site-Specific ?- and ?-Torsion Angle Determination in a Uniformly/Extensively 13C- and 15N-Labeled Peptide Publication year: 2011 Source: Journal of Magnetic Resonance, In Press, Accepted Manuscript, Available online 17 August 2011</br> Sungsool, Wi , Justin, Spano</br> A solid-state rotational-echo double resonance (REDOR) NMR method was introduced to identify the ?- and ?-torsion angle from a 1H–15N or 1H–13C? spin system of alanine-like residues in a selectively, uniformly, or extensively 15N-/13C-labeled peptide. When a C?(i) or a 15N peak is site-specifically obtainable in the...
nmrlearner Journal club 0 08-18-2011 03:52 AM
Site-Specific Solid-State NMR Detection of Hydrogen-Deuterium Exchange Reveals Conformational Changes in a 7-Helical Transmembrane Protein.
Site-Specific Solid-State NMR Detection of Hydrogen-Deuterium Exchange Reveals Conformational Changes in a 7-Helical Transmembrane Protein. Site-Specific Solid-State NMR Detection of Hydrogen-Deuterium Exchange Reveals Conformational Changes in a 7-Helical Transmembrane Protein. Biophys J. 2011 Aug 3;101(3):L23-L25 Authors: Wang S, Shi L, Kawamura I, Brown LS, Ladizhansky V Solid-state NMR spectroscopy is an efficient tool for following conformational dynamics of membrane proteins at atomic resolution. We used this technique for the site-specific...
nmrlearner Journal club 0 08-03-2011 12:00 PM
NMR analysis reveals 17?-estradiol induced conformational change in ER? ligand binding domain expressed in E. coli.
NMR analysis reveals 17?-estradiol induced conformational change in ER? ligand binding domain expressed in E. coli. NMR analysis reveals 17?-estradiol induced conformational change in ER? ligand binding domain expressed in E. coli. Mol Biol Rep. 2010 Dec 12; Authors: Paramanik V, Thakur MK Nuclear magnetic resonance (NMR) spectroscopy is a useful biophysical technique to study the ligand-protein interaction. In this report, we have used bacterially produced ER? and its domains for studying the functional analysis of ligand-protein interaction....
nmrlearner Journal club 0 12-15-2010 12:03 PM
[NMR paper] Site-specific 13C chemical shift anisotropy measurements in a uniformly 15N,13C-labeled microcrystalline protein by 3D magic-angle spinning NMR spectroscopy.
Site-specific 13C chemical shift anisotropy measurements in a uniformly 15N,13C-labeled microcrystalline protein by 3D magic-angle spinning NMR spectroscopy. Related Articles Site-specific 13C chemical shift anisotropy measurements in a uniformly 15N,13C-labeled microcrystalline protein by 3D magic-angle spinning NMR spectroscopy. J Am Chem Soc. 2005 Aug 31;127(34):11946-7 Authors: Wylie BJ, Franks WT, Graesser DT, Rienstra CM In this Communication, we introduce a 3D magic-angle spinning recoupling experiment that correlates chemical shift...
nmrlearner Journal club 0 12-01-2010 06:56 PM
[NMR paper] Probing site-specific conformational distributions in protein folding with solid-stat
Probing site-specific conformational distributions in protein folding with solid-state NMR. Related Articles Probing site-specific conformational distributions in protein folding with solid-state NMR. Proc Natl Acad Sci U S A. 2005 Mar 1;102(9):3284-9 Authors: Havlin RH, Tycko R We demonstrate an experimental approach to structural studies of unfolded and partially folded proteins in which conformational distributions are probed at a site-specific level by 2D solid-state 13C NMR spectroscopy of glassy frozen solutions. Experiments on chemical...
nmrlearner Journal club 0 11-24-2010 11:14 PM
[NMR paper] Detection of a conformational change in maltose binding protein by (129)Xe NMR spectr
Detection of a conformational change in maltose binding protein by (129)Xe NMR spectroscopy. Related Articles Detection of a conformational change in maltose binding protein by (129)Xe NMR spectroscopy. J Am Chem Soc. 2001 Sep 5;123(35):8616-7 Authors: Rubin SM, Spence MM, Dimitrov IE, Ruiz EJ, Pines A, Wemmer DE
nmrlearner Journal club 0 11-19-2010 08:44 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 04:53 AM.


Map