BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 04-27-2018, 10:26 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,184
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Protein environment affects the water-tryptophan binding mode. MD, QM/MM, and NMR studies of engrailed homeodomain mutants.

Protein environment affects the water-tryptophan binding mode. MD, QM/MM, and NMR studies of engrailed homeodomain mutants.

Related Articles Protein environment affects the water-tryptophan binding mode. MD, QM/MM, and NMR studies of engrailed homeodomain mutants.

Phys Chem Chem Phys. 2018 Apr 26;:

Authors: Špa?ková N, Trošanová Z, Šebesta F, Jansen S, Burda JV, Srb P, Zachrdla M, Žídek L, Kozelka J

Abstract
Water molecules can interact with aromatic moieties using either their O-H bonds or their lone-pairs of electrons. In proteins, water-? interactions have been reported to occur with tryptophan and histidine residues, and dynamic exchange between O-H? hydrogen bonding and lone-pair? interactions was suggested to take place, based on ab initio calculations. Here we used classical and QM/MM molecular dynamics simulations, complemented with an NMR study, to examine a specific water-indole interaction observed in the engrailed homeodomain and in its mutants. Our simulations indicate that the binding mode between water and indole can adapt to the potential created by the surrounding amino acids (and by the residues at the DNA surface in protein-DNA complexes), and support the model of dynamic switching between the O-H? hydrogen bonding and lone-pair? binding modes.


PMID: 29696277 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR thesis] Nuclear Magnetic Resonance Studies of ?-Chymotrypsin. I. NMR Studies of the Binding of Small Molecule Inhibitors to ?-Chymotrypsin. II. NMR Studies of the Interaction of N-TFA-D-Tryptophan Semicarbazide with ?-Chymotrypsin. III. ^(13)C-NMR Studies of
Nuclear Magnetic Resonance Studies of ?-Chymotrypsin. I. NMR Studies of the Binding of Small Molecule Inhibitors to ?-Chymotrypsin. II. NMR Studies of the Interaction of N-TFA-D-Tryptophan Semicarbazide with ?-Chymotrypsin. III. ^(13)C-NMR Studies of Methylated ?-Chymotrypsin. IV. NMR Studies of Acylated Chymotrypsins Gammon, Kenneth Lee (1973) Nuclear Magnetic Resonance Studies of ?-Chymotrypsin. I. NMR Studies of the Binding of Small Molecule Inhibitors to ?-Chymotrypsin. II. NMR Studies of the Interaction of N-TFA-D-Tryptophan Semicarbazide with ?-Chymotrypsin. III. ^(13)C-NMR...
nmrlearner NMR theses 0 02-06-2018 07:07 AM
Using Tryptophan Mutants To Probe the Structural andFunctional Status of BsSCO, a Copper Binding, Cytochrome c Oxidase Assembly Protein from Bacillus subtilis
Using Tryptophan Mutants To Probe the Structural andFunctional Status of BsSCO, a Copper Binding, Cytochrome c Oxidase Assembly Protein from Bacillus subtilis http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/bichaw/0/bichaw.ahead-of-print/acs.biochem.7b00833/20171117/images/medium/bi-2017-00833p_0009.gif Biochemistry DOI: 10.1021/acs.biochem.7b00833 http://feeds.feedburner.com/~ff/acs/bichaw?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/bichaw/~4/qWXMR8IB5PE More...
nmrlearner Journal club 0 11-20-2017 02:16 PM
[NMR paper] Water proton spin saturation affects measured protein backbone 15N spin relaxation rates
From Mendeley Biomolecular NMR group: Water proton spin saturation affects measured protein backbone 15N spin relaxation rates Journal of Magnetic Resonance (2011). Volume: 213, Issue: 1. Pages: 151-157. Kang Chen, Nico Tjandra et al. Published using Mendeley: The library management tool for researchers
nmrlearner Journal club 0 11-22-2012 11:49 AM
[NMR paper] Water proton spin saturation affects measured protein backbone 15N spin relaxation rates
From Mendeley Biomolecular NMR group: Water proton spin saturation affects measured protein backbone 15N spin relaxation rates Journal of Magnetic Resonance (2011). Volume: 213, Issue: 1. Pages: 151-157. Kang Chen, Nico Tjandra et al. Published using Mendeley: The reference manager for researchers
nmrlearner Journal club 0 10-12-2012 09:58 AM
[NMR paper] Water proton spin saturation affects measured protein backbone 15N spin relaxation rates
From Mendeley Biomolecular NMR group: Water proton spin saturation affects measured protein backbone 15N spin relaxation rates Journal of Magnetic Resonance (2011). Volume: 213, Issue: 1. Pages: 151-157. Kang Chen, Nico Tjandra et al. Published using Mendeley: The digital library for researchers
nmrlearner Journal club 0 08-24-2012 08:01 PM
Water proton spin saturation affects measured protein backboneN spin relaxation rates
Water proton spin saturation affects measured protein backboneN spin relaxation rates Publication year: 2011 Source: Journal of Magnetic Resonance, Available online 1 October 2011</br> Kang*Chen, Nico*Tjandra</br> Protein backboneN NMR spin relaxation rates are useful in characterizing the protein dynamics and structures. To observe the protein nuclear-spin resonances a pulse sequence has to include a water suppression scheme. There are two commonly employed methods, saturating or dephasing the water spins with pulse field gradients and keeping them unperturbed with flip-back pulses....
nmrlearner Journal club 0 10-02-2011 08:25 AM
[NMR paper] NMR studies of the mode of binding of corepressors and inducers to Escherichia coli t
NMR studies of the mode of binding of corepressors and inducers to Escherichia coli trp repressor. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif Related Articles NMR studies of the mode of binding of corepressors and inducers to Escherichia coli trp repressor. Eur J Biochem. 1996 Feb 1;235(3):804-13 Authors: Ramesh V, Syed SE, Frederick RO, Sutcliffe MJ, Barnes M, Roberts GC The binding of the corepressors tryptophan and 5-methyltryptophan and...
nmrlearner Journal club 0 08-22-2010 02:27 PM
[NMR paper] Heteronuclear 3D NMR studies of water bound to an FK506 binding protein/immunosuppres
Heteronuclear 3D NMR studies of water bound to an FK506 binding protein/immunosuppressant complex. Related Articles Heteronuclear 3D NMR studies of water bound to an FK506 binding protein/immunosuppressant complex. Biochemistry. 1993 Mar 16;32(10):2473-80 Authors: Xu RX, Meadows RP, Fesik SW From a series of 15N-resolved 3D ROESY-HMQC and 13C-resolved 3D NOESY-HMQC spectra of the FK506 binding protein (FKBP)/ascomycin complex in H2O, the locations of three tightly bound water molecules were identified. These waters are all buried within the...
nmrlearner Journal club 0 08-21-2010 11:53 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 12:00 PM.


Map