BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 04-11-2013, 03:08 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,134
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Protein backbone structure determination using RDC: An inverse kinematics approach with fast and exact solutions

From Mendeley Biomolecular NMR group:

Protein backbone structure determination using RDC: An inverse kinematics approach with fast and exact solutions

International Journal of Quantum Chemistry (2013). Volume: 113, Issue: 8. Pages: 1095-1106. Sotirios I. Pantos, Ekaterini Tiligada et al.

Published using Mendeley: The research tool for desktop & web



Read comments about this paper at Mendeley Biomolecular NMR group
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Journal Highlight: NMR quadrupole liouvillians for arbitrary spin: Exact symbolic expressions and perturbation solutions
Journal Highlight: NMR quadrupole liouvillians for arbitrary spin: Exact symbolic expressions and perturbation solutions http://www.spectroscopynow.com/common/images/thumbnails/13dc0c363d3.jpgThe NMR of quadrupolar nuclei with half-integer spins, which is described by treating the quadrupole interaction with second-order perturbation theory, has been elaborated on by calculating the transitions directly without the requirement of knowing the operators and wavefunctions. Read the rest at Spectroscopynow.com
nmrlearner General 0 04-01-2013 04:23 PM
Automated protein backbone assignment using the projection-decomposition approach
Automated protein backbone assignment using the projection-decomposition approach Abstract Spectral projection experiments by NMR in conjunction with decomposition analysis have been previously introduced for the backbone assignment of proteins; various pulse sequences as well as the behaviour with low signal-to-noise or chemical shift degeneracy have been illustrated. As a guide for routine applications of this combined tool, we provide here a systematic analysis on different types of proteins using welldefined run-time parameters. As a second result of this study, the backbone...
nmrlearner Journal club 0 07-20-2012 11:13 PM
Binding site identification and structure determination of protein-ligand complexes by NMR a semiautomated approach.
Binding site identification and structure determination of protein-ligand complexes by NMR a semiautomated approach. Binding site identification and structure determination of protein-ligand complexes by NMR a semiautomated approach. Methods Enzymol. 2011;493:241-75 Authors: Ziarek JJ, Peterson FC, Lytle BL, Volkman BF Over the last 15years, the role of NMR spectroscopy in the lead identification and optimization stages of pharmaceutical drug discovery has steadily increased. NMR occupies a unique niche in the biophysical analysis of drug-like...
nmrlearner Journal club 0 03-05-2011 01:02 PM
Fast methionine-based solution structure determination of calcium-calmodulin complexes
Fast methionine-based solution structure determination of calcium-calmodulin complexes Abstract Here we present a novel NMR method for the structure determination of calcium-calmodulin (Ca2+-CaM)-peptide complexes from a limited set of experimental restraints. A comparison of solved CaM-peptide structures reveals invariability in CaMâ??s backbone conformation and a structural plasticity in CaMâ??s domain orientation enabled by a flexible linker. Knowing this, the collection and analysis of an extensive set of NOESY spectra is redundant. Although RDCs can define CaM domain orientation in...
nmrlearner Journal club 0 03-03-2011 02:06 AM
High-resolution protein structure determination starting with a global fold calculated from exact solutions to the RDC equations
High-resolution protein structure determination starting with a global fold calculated from exact solutions to the RDC equations Abstract We present a novel structure determination approach that exploits the global orientational restraints from RDCs to resolve ambiguous NOE assignments. Unlike traditional approaches that bootstrap the initial fold from ambiguous NOE assignments, we start by using RDCs to compute accurate secondary structure element (SSE) backbones at the beginning of structure calculation. Our structure determination package, called rdc-Panda (RDC-based SSE PAcking with...
nmrlearner Journal club 0 01-09-2011 12:46 PM
[NMR paper] An algebraic geometry approach to protein structure determination from NMR data.
An algebraic geometry approach to protein structure determination from NMR data. Related Articles An algebraic geometry approach to protein structure determination from NMR data. Proc IEEE Comput Syst Bioinform Conf. 2005;:235-46 Authors: Wang L, Mettu RR, Donald BR Our paper describes the first provably-efficient algorithm for determining protein structures de novo, solely from experimental data. We show how the global nature of a certain kind of NMR data provides quantifiable complexity-theoretic benefits, allowing us to classify our...
nmrlearner Journal club 0 11-24-2010 11:14 PM
[NMR paper] An approach for high-throughput structure determination of proteins by NMR spectrosco
An approach for high-throughput structure determination of proteins by NMR spectroscopy. Related Articles An approach for high-throughput structure determination of proteins by NMR spectroscopy. J Biomol NMR. 2000 Nov;18(3):229-38 Authors: Medek A, Olejniczak ET, Meadows RP, Fesik SW An approach is described for rapidly determining protein structures by NMR that utilizes proteins containing 13C-methyl labeled Val, Leu, and Ile (delta1) and protonated Phe and Tyr in a deuterated background. Using this strategy, the key NOEs that define the...
nmrlearner Journal club 0 11-19-2010 08:29 PM
[NMR paper] Analysis of the backbone dynamics of interleukin-1 beta using two-dimensional inverse
Analysis of the backbone dynamics of interleukin-1 beta using two-dimensional inverse detected heteronuclear 15N-1H NMR spectroscopy. Related Articles Analysis of the backbone dynamics of interleukin-1 beta using two-dimensional inverse detected heteronuclear 15N-1H NMR spectroscopy. Biochemistry. 1990 Aug 14;29(32):7387-401 Authors: Clore GM, Driscoll PC, Wingfield PT, Gronenborn AM The backbone dynamics of uniformly 15N-labeled interleukin-1 beta are investigated by using two-dimensional inverse detected heteronuclear 15N-1H NMR...
nmrlearner Journal club 0 08-21-2010 11:04 PM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 09:38 AM.


Map