BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 09-07-2013, 09:54 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,169
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Profiling Formulated Monoclonal Antibodies by 1H NMR Spectroscopy.

Profiling Formulated Monoclonal Antibodies by 1H NMR Spectroscopy.

Profiling Formulated Monoclonal Antibodies by 1H NMR Spectroscopy.

Anal Chem. 2013 Sep 5;

Authors: Poppe L, Jordan JB, Lawson K, Jerums M, Apostol I, Schnier PD

Abstract
Nuclear magnetic resonance (NMR) is arguably the most direct methodology for characterizing the higher-order structure of proteins in solution. Structural characterization of proteins by NMR typically utilizes heteronuclear experiments. However, for formulated monoclonal antibody (mAb) therapeutics, the use of these approaches is not currently tenable due the requirements of isotope labeling, the large size of the proteins, and the restraints imposed by various formulations. Here, we present a new strategy to characterize formulated mAbs using 1H NMR. This method, based on the pulsed field gradient stimulated echo (PGSTE) experiment, facilitates the use of 1H NMR to generate highly resolved spectra of intact mAbs in their formulation buffers. This method of data acquisition, along with post-acquisition signal processing, allows the generation of structural and hydrodynamic profiles of antibodies. We demonstrate how variation of the PGSTE pulse sequence parameters allows proton relaxation rates and relative diffusion coefficients to be obtained in a simple fashion. This new methodology can be used as a robust way to compare and characterize mAb therapeutics.


PMID: 24006877 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
NMR profiling of oncogenic RAS and RASopathies [Biochemistry]
NMR profiling of oncogenic RAS and RASopathies Smith, M. J., Neel, B. G., Ikura, M.... Date: 2013-03-19 Defects in the RAS small G protein or its associated network of regulatory proteins that disrupt GTPase cycling are a major cause of cancer and developmental RASopathy disorders. Lack of robust functional assays has been a major hurdle in RAS pathway-targeted drug development. We used NMR to obtain detailed mechanistic... Read More PNAS: Number: 12
nmrlearner Journal club 0 03-20-2013 01:41 AM
Synthesis and Molecular Recognition Studies of the HNK-1 Trisaccharide and Related Oligosaccharides. The Specificity of Monoclonal Anti-HNK-1 Antibodies as Assessed by Surface Plasmon Resonance and STD NMR
Synthesis and Molecular Recognition Studies of the HNK-1 Trisaccharide and Related Oligosaccharides. The Specificity of Monoclonal Anti-HNK-1 Antibodies as Assessed by Surface Plasmon Resonance and STD NMR Yury E. Tsvetkov, Monika Burg-Roderfeld, Gabriele Loers, Ana Arda?, Elena V. Sukhova, Elena A. Khatuntseva, Alexey A. Grachev, Alexander O. Chizhov, Hans-Christian Siebert, Melitta Schachner, Jesu?s Jime?nez-Barbero and Nikolay E. Nifantiev ...
nmrlearner Journal club 0 12-20-2011 04:09 AM
Metabolic profiling of vitamin C deficiency in Guloâ??/â?? mice using proton NMR spectroscopy
Metabolic profiling of vitamin C deficiency in Guloâ??/â?? mice using proton NMR spectroscopy Abstract Nutrient deficiencies are an ongoing problem in many populations and ascorbic acid is a key vitamin whose mild or acute absence leads to a number of conditions including the famously debilitating scurvy. As such, the biochemical effects of ascorbate deficiency merit ongoing scrutiny, and the Gulo knockout mouse provides a useful model for the metabolomic examination of vitamin C deficiency. Like humans, these animals are incapable of synthesizing ascorbic acid but with dietary...
nmrlearner Journal club 0 03-03-2011 02:06 AM
Fertility testing: profiling with NMR
Fertility testing: profiling with NMR Metabonomic application of NMR to test fertility. More...
nmrlearner General 0 12-02-2010 08:43 PM
[NMR paper] Precise epitope mapping of malaria parasite inhibitory antibodies by TROSY NMR cross-
Precise epitope mapping of malaria parasite inhibitory antibodies by TROSY NMR cross-saturation. Related Articles Precise epitope mapping of malaria parasite inhibitory antibodies by TROSY NMR cross-saturation. Biochemistry. 2005 Jan 18;44(2):518-23 Authors: Morgan WD, Frenkiel TA, Lock MJ, Grainger M, Holder AA We have applied NMR cross-saturation with TROSY detection to the problem of precisely mapping conformational epitopes on complete protein antigen molecules. We have investigated complexes of the Fab fragments of two antibodies that...
nmrlearner Journal club 0 11-24-2010 11:14 PM
[NMR paper] Epitope mapping of gibberellin to the anti-gibberellin A(4) monoclonal antibody by sa
Epitope mapping of gibberellin to the anti-gibberellin A(4) monoclonal antibody by saturation transfer difference NMR spectroscopy. Related Articles Epitope mapping of gibberellin to the anti-gibberellin A(4) monoclonal antibody by saturation transfer difference NMR spectroscopy. Biochem Biophys Res Commun. 2003 Aug 1;307(3):498-502 Authors: Murata T, Hemmi H, Nakajima M, Yoshida M, Yamaguchi I Saturation transfer difference (STD) NMR spectroscopy is a promising tool for rapid screening, identifying ligands that interact with a target protein,...
nmrlearner Journal club 0 11-24-2010 09:16 PM
[NMR paper] NMR identification of epitopes of Lyme disease antigen OspA to monoclonal antibodies.
NMR identification of epitopes of Lyme disease antigen OspA to monoclonal antibodies. Related Articles NMR identification of epitopes of Lyme disease antigen OspA to monoclonal antibodies. J Mol Biol. 1998 Aug 7;281(1):61-7 Authors: Huang X, Yang X, Luft BJ, Koide S Outer surface protein A (OspA) from the Lyme disease spirochete Borrelia burgdorferi has been a focus of vaccine development. We have identified epitopes of OspA to two monoclonal antibodies (mAbs) by comparing NMR chemical shifts of free OspA and those in Fab complexes....
nmrlearner Journal club 0 11-17-2010 11:15 PM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 02:47 PM.


Map