BioNMR

BioNMR (http://www.bionmr.com/forum/)
-   Journal club (http://www.bionmr.com/forum/journal-club-9/)
-   -   [NMR paper] Probing Structure and Dynamics of Protein Assemblies by Magic Angle Spinning NMR Spectroscopy. (http://www.bionmr.com/forum/journal-club-9/probing-structure-dynamics-protein-assemblies-magic-angle-spinning-nmr-spectroscopy-17481/)

nmrlearner 02-14-2013 02:37 PM

Probing Structure and Dynamics of Protein Assemblies by Magic Angle Spinning NMR Spectroscopy.
 
Probing Structure and Dynamics of Protein Assemblies by Magic Angle Spinning NMR Spectroscopy.

Probing Structure and Dynamics of Protein Assemblies by Magic Angle Spinning NMR Spectroscopy.

Acc Chem Res. 2013 Feb 13;

Authors: Yan S, Suiter CL, Hou G, Zhang H, Polenova T

Abstract
In living organisms, biological molecules often organize into multicomponent complexes. Such assemblies consist of various proteins and carry out essential functions, ranging from cell division, transport, and energy transduction to catalysis, signaling, and viral infectivity. To understand the biological functions of these assemblies, in both healthy and disease states, researchers need to study their three-dimensional architecture and molecular dynamics. To date, the large size, the lack of inherent long-range order, and insolubility have made atomic resolution studies of many protein assemblies challenging or impractical using traditional structural biology methods such as X-ray diffraction and solution NMR spectroscopy. In the past 10 years, we have focused our work on the development and application of magic angle spinning solid-state NMR (MAS NMR) methods to characterize large protein assemblies at atomic-level resolution. In this Account, we discuss the rapid progress in the field of MAS NMR spectroscopy, citing work from our laboratory and others on methodological developments that have facilitated the in-depth analysis of biologically important protein assemblies. We emphasize techniques that yield enhanced sensitivity and resolution, such as fast MAS (spinning frequencies of 40 kHz and above) and nonuniform sampling protocols for data acquisition and processing. We also discuss the experiments for gaining distance restraints and for recoupling anisotropic tensorial interactions under fast MAS conditions. We give an overview of sample preparation approaches when working with protein assemblies. Following the overview of contemporary MAS NMR methods, we present case studies into the structure and dynamics of two classes of biological systems under investigation in our laboratory. We will first turn our attention to cytoskeletal microtubule motor proteins including mammalian dynactin and dynein light chain 8. We will then discuss protein assemblies from the HIV-1 retrovirus.


PMID: 23402263 [PubMed - as supplied by publisher]



More...


All times are GMT. The time now is 11:49 AM.

Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Search Engine Friendly URLs by vBSEO 3.6.0
Copyright, BioNMR.com, 2003-2013