BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 06-27-2015, 01:13 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,174
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Probing the Residual Structure of the Low Populated Denatured State of ADA2h under Folding Conditions by Relaxation Dispersion NMR Spectroscopy.

Probing the Residual Structure of the Low Populated Denatured State of ADA2h under Folding Conditions by Relaxation Dispersion NMR Spectroscopy.

Related Articles Probing the Residual Structure of the Low Populated Denatured State of ADA2h under Folding Conditions by Relaxation Dispersion NMR Spectroscopy.

Biochemistry. 2015 Jun 26;

Authors: Pustovalova Y, Kukic P, Vendruscolo M, Korzhnev DM

Abstract
The structural characterization of low-populated states of proteins with accuracy comparable to that achievable for native states is important for understanding the mechanisms of protein folding and function, as well as misfolding and aggregation. Because of the transient nature of these low-populated states, they are seldom detected directly under conditions that favor folding. The activation domain of human procarboxypeptidase A2 (ADA2h) is an ?/?-protein that forms amyloid fibrils at low pH presumably initiated from a denatured state with a considerable amount of residual structure. Here we used Carr-Parcell-Meiboom-Gill relaxation dispersion (CPMG RD) NMR spectroscopy to characterize the structure of the denatured state of the ADA2h I71V mutant under conditions that favor folding. Under these conditions, the lifetime of the denatured state of the I71V ADA2h is of the order of milliseconds and its population is about several percent, which makes this mutant amenable to studies by CPMG RD methods. The nearly complete set of CPMG RD derived backbone 15N, 13C and 1H NMR chemical shifts in the I71V ADA2h denatured state reveals that it retains a significant fraction (up to 50-60%) of native-like ?-helical structure, while the regions encompassing native ?-strands are structured to a much lesser extent. The native-like ?-helical structure of the denatured state can bring together hydrophobic residues on the same sides of ?-helices, making them available for intra- or inter-molecular interactions. CPMG RD data analysis thus allowed a detailed structural characterization of the ADA2h denatured state under folding conditions not previously achieved for this protein.


PMID: 26115097 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Probing the Free Energy Landscape of the Fast-Folding gpW Protein by Relaxation Dispersion NMR.
Probing the Free Energy Landscape of the Fast-Folding gpW Protein by Relaxation Dispersion NMR. Related Articles Probing the Free Energy Landscape of the Fast-Folding gpW Protein by Relaxation Dispersion NMR. J Am Chem Soc. 2014 May 8; Authors: Sanchez-Medina C, Sekhar A, Vallurupalli P, Cerminara M, Muņoz V, Kay LE Abstract The topographic features of the free energy landscapes that govern the thermodynamics and kinetics of conformational transitions in proteins, which in turn are integral for function, are not well understood....
nmrlearner Journal club 0 05-09-2014 07:01 PM
Probing the Free Energy Landscape of the Fast-Folding gpW Protein by Relaxation Dispersion NMR
Probing the Free Energy Landscape of the Fast-Folding gpW Protein by Relaxation Dispersion NMR Celia Sanchez-Medina, Ashok Sekhar, Pramodh Vallurupalli, Michele Cerminara, Victor Mun?oz and Lewis E. Kay http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja502705y/aop/images/medium/ja-2014-02705y_0007.gif Journal of the American Chemical Society DOI: 10.1021/ja502705y http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/uht26log5zQ
nmrlearner Journal club 0 05-08-2014 05:38 PM
[NMR paper] Frontispiece: probing transient conformational States of proteins by solid-state r1? relaxation-dispersion NMR spectroscopy.
Frontispiece: probing transient conformational States of proteins by solid-state r1? relaxation-dispersion NMR spectroscopy. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--media.wiley.com-assets-2250-98-WileyOnlineLibrary-Button_120x27px_FullText.gif Related Articles Frontispiece: probing transient conformational States of proteins by solid-state r1? relaxation-dispersion NMR spectroscopy. Angew Chem Int Ed Engl. 2014 Apr 22;53(17) Authors: Ma P, Haller JD, Zajakala J, Macek P, Sivertsen AC, Willbold D, Boisbouvier J,...
nmrlearner Journal club 0 04-23-2014 06:31 PM
[NMR paper] Probing Transient Conformational States of Proteins by Solid-State R1? Relaxation-Dispersion NMR Spectroscopy.
Probing Transient Conformational States of Proteins by Solid-State R1? Relaxation-Dispersion NMR Spectroscopy. Related Articles Probing Transient Conformational States of Proteins by Solid-State R1? Relaxation-Dispersion NMR Spectroscopy. Angew Chem Int Ed Engl. 2014 Mar 18; Authors: Ma P, Haller JD, Zajakala J, Macek P, Sivertsen AC, Willbold D, Boisbouvier J, Schanda P Abstract The function of proteins depends on their ability to sample a variety of states differing in structure and free energy. Deciphering how the various thermally...
nmrlearner Journal club 0 03-20-2014 12:44 PM
Nonnative Interactions in the FF Domain Folding Pathway from an Atomic Resolution Structure of a Sparsely Populated Intermediate: An NMR Relaxation Dispersion Study
Nonnative Interactions in the FF Domain Folding Pathway from an Atomic Resolution Structure of a Sparsely Populated Intermediate: An NMR Relaxation Dispersion Study Dmitry M. Korzhnev, Robert M. Vernon, Tomasz L. Religa, Alexandar L. Hansen, David Baker, Alan R. Fersht and Lewis E. Kay http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja203686t/aop/images/medium/ja-2011-03686t_0002.gif Journal of the American Chemical Society DOI: 10.1021/ja203686t http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA...
nmrlearner Journal club 0 06-29-2011 04:45 AM
Non-Native Interactions in the FF Domain Folding Pathway From an Atomic Resolution Structure of a Sparsely Populated Intermediate: An NMR Relaxation Dispersion Study.
Non-Native Interactions in the FF Domain Folding Pathway From an Atomic Resolution Structure of a Sparsely Populated Intermediate: An NMR Relaxation Dispersion Study. Non-Native Interactions in the FF Domain Folding Pathway From an Atomic Resolution Structure of a Sparsely Populated Intermediate: An NMR Relaxation Dispersion Study. J Am Chem Soc. 2011 Jun 6; Authors: Korzhnev DM, Vernon RM, Religa TL, Hansen AL, Baker D, Fersht AR, Kay LE Several all-helical single-domain proteins have been shown to fold rapidly (us timescale) to a compact...
nmrlearner Journal club 0 06-07-2011 11:05 AM
[NMR paper] Low-populated folding intermediates of Fyn SH3 characterized by relaxation dispersion
Low-populated folding intermediates of Fyn SH3 characterized by relaxation dispersion NMR. Related Articles Low-populated folding intermediates of Fyn SH3 characterized by relaxation dispersion NMR. Nature. 2004 Jul 29;430(6999):586-90 Authors: Korzhnev DM, Salvatella X, Vendruscolo M, Di Nardo AA, Davidson AR, Dobson CM, Kay LE Many biochemical processes proceed through the formation of functionally significant intermediates. Although the identification and characterization of such species can provide vital clues about the mechanisms of the...
nmrlearner Journal club 0 11-24-2010 09:51 PM
[NMR paper] NMR characterization of residual structure in the denatured state of protein L.
NMR characterization of residual structure in the denatured state of protein L. Related Articles NMR characterization of residual structure in the denatured state of protein L. J Mol Biol. 2000 Jun 23;299(5):1341-51 Authors: Yi Q, Scalley-Kim ML, Alm EJ, Baker D Triple-resonance NMR experiments were used to assign the (13)C(alpha), (13)C(beta), (15)N and NH resonances for all the residues in the denatured state of a destabilized protein L variant in 2 M guanidine. The chemical shifts of most resonances were very close to their random coil...
nmrlearner Journal club 0 11-18-2010 09:15 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 03:34 AM.


Map