BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 03-03-2020, 11:18 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,134
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Predicting NMR relaxation of proteins from molecular dynamics simulations with accurate methyl rotation barriers.

Predicting NMR relaxation of proteins from molecular dynamics simulations with accurate methyl rotation barriers.

Related Articles Predicting NMR relaxation of proteins from molecular dynamics simulations with accurate methyl rotation barriers.

J Chem Phys. 2020 Feb 28;152(8):084102

Authors: Hoffmann F, Mulder FAA, Schäfer LV

Abstract
The internal dynamics of proteins occurring on time scales from picoseconds to nanoseconds can be sensitively probed by nuclear magnetic resonance (NMR) spin relaxation experiments, as well as by molecular dynamics (MD) simulations. This complementarity offers unique opportunities, provided that the two methods are compared at a suitable level. Recently, several groups have used MD simulations to compute the spectral density of backbone and side chain molecular motions and to predict NMR relaxation rates from these. Unfortunately, in the case of methyl groups in protein side chains, inaccurate energy barriers to methyl rotation were responsible for a systematic discrepancy in the computed relaxation rates, as demonstrated for the AMBER ff99SB*-ILDN force field (and related parameter sets), impairing quantitative agreement between simulations and experiments. However, correspondence could be regained by emending the MD force field with accurate coupled cluster quantum chemical calculations. Spurred by this positive result, we tested whether this approach could be generally applicable, in spite of the fact that different MD force fields employ different water models. Improved methyl group rotation barriers for the CHARMM36 and AMBER ff15ipq protein force fields were derived, such that the NMR relaxation data obtained from the MD simulations even now display very good agreement with the experiment. Results herein showcase the performance of present-day MD force fields and manifest their refined ability to accurately describe internal protein dynamics.


PMID: 32113361 [PubMed - in process]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Side Chain Dynamics of the Trifluoroacetone Cysteine Derivative Characterized by 19F NMR Relaxation and Molecular Dynamics Simulations.
Side Chain Dynamics of the Trifluoroacetone Cysteine Derivative Characterized by 19F NMR Relaxation and Molecular Dynamics Simulations. Related Articles Side Chain Dynamics of the Trifluoroacetone Cysteine Derivative Characterized by 19F NMR Relaxation and Molecular Dynamics Simulations. J Phys Chem B. 2019 Apr 11;: Authors: Rashid S, Lee BL, Wajda B, Spyracopoulos L Abstract 19F NMR spectroscopy is a powerful tool for the study of the structures, dynamics, and interactions of proteins bearing cysteine residues chemically...
nmrlearner Journal club 0 04-12-2019 05:25 PM
[ASAP] Lysine Side-Chain Dynamics in the Binding Site of Homeodomain/DNA Complexes As Observed by NMR Relaxation Experiments and Molecular Dynamics Simulations
Lysine Side-Chain Dynamics in the Binding Site of Homeodomain/DNA Complexes As Observed by NMR Relaxation Experiments and Molecular Dynamics Simulations https://pubs.acs.org/appl/literatum/publisher/achs/journals/content/bichaw/0/bichaw.ahead-of-print/acs.biochem.8b00195/20180430/images/medium/bi-2018-001959_0008.gif Biochemistry DOI: 10.1021/acs.biochem.8b00195 http://feeds.feedburner.com/~ff/acs/bichaw?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/bichaw/~4/609FbT_MCUM More...
nmrlearner Journal club 0 05-01-2018 10:57 PM
[NMR paper] Lysine Side-Chain Dynamics in the Binding Site of Homeodomain/DNA Complexes as Observed by NMR Relaxation Experiments and Molecular Dynamics Simulations.
Lysine Side-Chain Dynamics in the Binding Site of Homeodomain/DNA Complexes as Observed by NMR Relaxation Experiments and Molecular Dynamics Simulations. Related Articles Lysine Side-Chain Dynamics in the Binding Site of Homeodomain/DNA Complexes as Observed by NMR Relaxation Experiments and Molecular Dynamics Simulations. Biochemistry. 2018 Apr 17;: Authors: Baird-Titus JM, Thapa M, Doerdelmann T, Combs KA, Rance M Abstract An important but poorly characterized contribution to the thermodynamics of protein-DNA interactions is...
nmrlearner Journal club 0 04-18-2018 01:41 PM
[NMR paper] Conformational entropy of FK506 binding to FKBP12 determined by NMR relaxation and molecular dynamics simulations.
Conformational entropy of FK506 binding to FKBP12 determined by NMR relaxation and molecular dynamics simulations. Conformational entropy of FK506 binding to FKBP12 determined by NMR relaxation and molecular dynamics simulations. Biochemistry. 2018 Feb 07;: Authors: Solomentsev G, Diehl C, Akke M Abstract FKBP12 (FK506 binding protein 12 kDa) is an important drug target that attracts a great deal of interest as a model system for computational drug design and studies on the role of protein dynamics in ligand binding. NMR...
nmrlearner Journal club 0 02-08-2018 04:32 PM
NMR Relaxation and Molecular Dynamics Simulations of Side Chain Dynamics in Proteins
NMR Relaxation and Molecular Dynamics Simulations of Side Chain Dynamics in Proteins Publication date: 2 February 2018 Source:Biophysical Journal, Volume 114, Issue 3, Supplement 1</br> Author(s): Falk Hoffmann, Mengjun Xue, Frans Mulder, Lars Schäfer</br> </br></br> </br></br> More...
nmrlearner Journal club 0 02-07-2018 03:41 PM
[NMR paper] Ab-initio Prediction of NMR Spin-Relaxation Parameters from Molecular Dynamics Simulations.
Ab-initio Prediction of NMR Spin-Relaxation Parameters from Molecular Dynamics Simulations. Related Articles Ab-initio Prediction of NMR Spin-Relaxation Parameters from Molecular Dynamics Simulations. J Chem Theory Comput. 2018 Jan 02;: Authors: Chen PC, Hologne M, Walker O, Hennig J Abstract 1H-15N NMR spin relaxation and relaxation dispersion experiments can reveal the time scale and extent of protein motions across the ps-ms range, where the ps-ns dynamics revealed by fundamental quantities R1, R2, and heteronuclear NOE can be...
nmrlearner Journal club 0 01-04-2018 08:45 AM
[NMR paper] Motions and Entropies in Proteins as Seen in NMR Relaxation Experiments and Molecular Dynamics Simulations.
Motions and Entropies in Proteins as Seen in NMR Relaxation Experiments and Molecular Dynamics Simulations. Related Articles Motions and Entropies in Proteins as Seen in NMR Relaxation Experiments and Molecular Dynamics Simulations. J Phys Chem B. 2014 Oct 28; Authors: Allnér O, Foloppe N, Nilsson L Abstract Molecular dynamics simulations of E. coli glutaredoxin1 in water have been performed to relate the dynamical parameters and entropy obtained in NMR relaxation experiments, with results extracted from simulated trajectory...
nmrlearner Journal club 0 10-29-2014 03:51 PM
Alanine Methyl Groups as NMR Probes of Molecular Structure and Dynamics in High-Molecular-Weight Proteins
Alanine Methyl Groups as NMR Probes of Molecular Structure and Dynamics in High-Molecular-Weight Proteins Raquel Godoy-Ruiz, Chenyun Guo and Vitali Tugarinov http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja1083656/aop/images/medium/ja-2010-083656_0009.gif Journal of the American Chemical Society DOI: 10.1021/ja1083656 http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/hxZ4cabF688
nmrlearner Journal club 0 12-08-2010 10:04 AM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 09:19 AM.


Map