BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 06-09-2015, 08:18 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,135
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Paramagnetic NMR probes for characterization of the dynamic conformations and interactions of oligosaccharides.

Paramagnetic NMR probes for characterization of the dynamic conformations and interactions of oligosaccharides.

Paramagnetic NMR probes for characterization of the dynamic conformations and interactions of oligosaccharides.

Glycoconj J. 2015 Jun 7;

Authors: Kato K, Yamaguchi T

Abstract
Paramagnetism-assisted nuclear magnetic resonance (NMR) techniques have recently been applied to a wide variety of biomolecular systems, using sophisticated immobilization methods to attach paramagnetic probes, such as spin labels and lanthanide-chelating groups, at specific sites of the target biomolecules. This is also true in the field of carbohydrate NMR spectroscopy. NMR analysis of oligosaccharides is often precluded by peak overlap resulting from the lack of variability of local chemical structures, by the insufficiency of conformational restraints from nuclear Overhauser effect (NOE) data due to low proton density, and moreover, by the inherently flexible nature of carbohydrate chains. Paramagnetic probes attached to the reducing ends of oligosaccharides cause paramagnetic relaxation enhancements (PREs) and/or pseudocontact shifts (PCSs) resolve the peak overlap problem. These spectral perturbations can be sources of long-range atomic distance information, which complements the local conformational information derived from J couplings and NOEs. Furthermore, paramagnetic NMR approaches, in conjunction with computational methods, have opened up possibilities for the description of dynamic conformational ensembles of oligosaccharides in solution. Several applications of paramagnetic NMR techniques are presented to demonstrate their utility for characterizing the conformational dynamics of oligosaccharides and for probing the carbohydrate-recognition modes of proteins. These techniques can be applied to the characterization of transient, non-stoichiometric interactions and will contribute to the visualization of dynamic biomolecular processes involving sugar chains.


PMID: 26050258 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] NMR and computational methods in the structural and dynamic characterization of ligand-receptor interactions.
NMR and computational methods in the structural and dynamic characterization of ligand-receptor interactions. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--production.springer.de-OnlineResources-Logos-springerlink.gif Related Articles NMR and computational methods in the structural and dynamic characterization of ligand-receptor interactions. Adv Exp Med Biol. 2014;805:271-304 Authors: Ghitti M, Musco G, Spitaleri A Abstract The recurrent failures in drug discovery campaigns, the asymmetry between the...
nmrlearner Journal club 0 05-31-2014 01:47 AM
[NMR paper] Solution NMR Studies on the Orientation of Membrane-Bound Peptides and Proteins by Paramagnetic Probes.
Solution NMR Studies on the Orientation of Membrane-Bound Peptides and Proteins by Paramagnetic Probes. Solution NMR Studies on the Orientation of Membrane-Bound Peptides and Proteins by Paramagnetic Probes. Molecules. 2013;18(7):7407-7435 Authors: Schrank E, Wagner GE, Zangger K Abstract Many peptides and proteins are attached to or immersed in a biological membrane. In order to understand their function not only the structure but also their topology in the membrane is important. Solution NMR spectroscopy is one of the most often...
nmrlearner Journal club 0 06-27-2013 02:10 PM
Maximum occurrence analysis of protein conformations for different distributions of paramagnetic metal ions within flexible two-domain proteins
Maximum occurrence analysis of protein conformations for different distributions of paramagnetic metal ions within flexible two-domain proteins Publication year: 2012 Source:Journal of Magnetic Resonance, Volume 215</br> Claudio Luchinat, Malini Nagulapalli, Giacomo Parigi, Luca Sgheri</br> Multidomain proteins are composed of rigid domains connected by (flexible) linkers. Therefore, the domains may experience a large degree of reciprocal reorientation. Pseudocontact shifts and residual dipolar couplings arising from one or more paramagnetic metals successively placed...
nmrlearner Journal club 0 03-09-2012 09:16 AM
Maximum occurrence analysis of protein conformations for different distributions of paramagnetic metal ions within flexible two-domain proteins
Maximum occurrence analysis of protein conformations for different distributions of paramagnetic metal ions within flexible two-domain proteins Publication year: 2011 Source: Journal of Magnetic Resonance, Available online 30 December 2011</br> Claudio*Luchinat, Malini*Nagulapalli, Giacomo*Parigi, Luca*Sgheri</br> Multidomain proteins are composed of rigid domains connected by (flexible) linkers. Therefore, the domains may experience a large degree of reciprocal reorientation. Pseudocontact shifts and residual dipolar couplings arising from one or more paramagnetic metals successively...
nmrlearner Journal club 0 12-31-2011 10:40 AM
Narrowing the conformational space sampled by two-domain proteins with paramagnetic probes in both domains
Narrowing the conformational space sampled by two-domain proteins with paramagnetic probes in both domains Abstract Calmodulin is a two-domain protein which in solution can adopt a variety of conformations upon reorientation of its domains. The maximum occurrence (MO) of a set of calmodulin conformations that are representative of the overall conformational space possibly sampled by the protein, has been calculated from the paramagnetism-based restraints. These restraints were measured after inclusion of a lanthanide binding tag in the C-terminal domain to supplement the data obtained...
nmrlearner Journal club 0 08-13-2011 02:47 AM
[NMR paper] Use of paramagnetic NMR probes for structural analysis in cytochrome c3 from Desulfov
Use of paramagnetic NMR probes for structural analysis in cytochrome c3 from Desulfovibrio vulgaris. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif Related Articles Use of paramagnetic NMR probes for structural analysis in cytochrome c3 from Desulfovibrio vulgaris. Eur J Biochem. 1997 Mar 15;244(3):721-34 Authors: Salgueiro CA, Turner DL, Xavier AV The dipolar field generated by each of the four haems in the tetrahaem ferricytochrome c3 from...
nmrlearner Journal club 0 08-22-2010 03:31 PM
[NMR paper] Use of paramagnetic NMR probes for structural analysis in cytochrome c3 from Desulfov
Use of paramagnetic NMR probes for structural analysis in cytochrome c3 from Desulfovibrio vulgaris. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif Related Articles Use of paramagnetic NMR probes for structural analysis in cytochrome c3 from Desulfovibrio vulgaris. Eur J Biochem. 1997 Mar 15;244(3):721-34 Authors: Salgueiro CA, Turner DL, Xavier AV The dipolar field generated by each of the four haems in the tetrahaem ferricytochrome c3 from...
nmrlearner Journal club 0 08-22-2010 03:03 PM
[NMR paper] NMR identification of protein surfaces using paramagnetic probes.
NMR identification of protein surfaces using paramagnetic probes. Related Articles NMR identification of protein surfaces using paramagnetic probes. Biochemistry. 1990 Oct 30;29(43):10041-8 Authors: Petros AM, Mueller L, Kopple KD Paramagnetic agents produce line broadening and thus cancellation of anti phase cross-peak components in two-dimensional correlated nuclear magnetic resonance spectra. The specificity of this effect was examined to determine its utility for identifying surface residues of proteins. Ubiquitin and hen egg white...
nmrlearner Journal club 0 08-21-2010 11:04 PM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 12:52 AM.


Map