BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 05-16-2013, 06:05 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,174
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default 2D (1)H/(1)H RFDR and NOESY NMR Experiments on a Membrane-Bound Antimicrobial Peptide Under Magic Angle Spinning.

2D (1)H/(1)H RFDR and NOESY NMR Experiments on a Membrane-Bound Antimicrobial Peptide Under Magic Angle Spinning.

Related Articles 2D (1)H/(1)H RFDR and NOESY NMR Experiments on a Membrane-Bound Antimicrobial Peptide Under Magic Angle Spinning.

J Phys Chem B. 2013 May 14;

Authors: Ramamoorthy A, Xu J

Abstract
There is significant interest in solving high-resolution dynamic structures of membrane-associated peptides using solid-state NMR spectroscopy. Previous solid-state NMR studies have provided valuable insights into the functional properties of an exciting class of biomacromolecules such as antimicrobial peptides and amyloid peptides. However, it has been a major challenge to apply solid-state NMR techniques to study peptides or proteins that are not labeled with specific isotopes such as 13C, 15N and/or 2H. This study utilizes 2D 1H/1H RFDR (radio-frequency-driven dipolar recoupling) and NOESY pulse sequences under magic angle spinning to study a membrane-bound antimicrobial peptide MSI-78 (or also known as pexiganan). We demonstrate that proton resonances can be assigned and structural constraints - NOE and 1H-1H dipolar couplings - can be measured without the need for any isotopic enrichment. The buildup curves, showing the dependence of the cross peak intensity against the mixing time, obtained from 2D 1H/1H NOESY and RFDR experiments are compared. Our results reveal that the RFDR-recovered 1H-1H dipolar couplings associated with alpha and side chain protons are larger than that with the amide-protons. This study provides a means to measure residual 1H-1H dipolar couplings for the investigation of structure, dynamics, and aggregation of peptides using a suitable model membrane like micelles or bicelles.


PMID: 23672643 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
3D DUMAS: Simultaneous acquisition of three-dimensional magic angle spinning solid-state NMR experiments of proteins
3D DUMAS: Simultaneous acquisition of three-dimensional magic angle spinning solid-state NMR experiments of proteins July 2012 Publication year: 2012 Source:Journal of Magnetic Resonance, Volume 220</br> </br> Using the DUMAS (Dual acquisition Magic Angle Spinning) solid-state NMR approach, we created new pulse schemes that enable the simultaneous acquisition of three dimensional (3D) experiments on uniformly 13C, 15N labeled proteins. These new experiments exploit the simultaneous cross-polarization (SIM-CP) from 1H to 13C and 15N to acquire two 3D experiments...
nmrlearner Journal club 0 02-03-2013 10:13 AM
Solid-state magic-angle spinning NMR of membrane proteins and protein–ligand interactions
Solid-state magic-angle spinning NMR of membrane proteins and protein–ligand interactions April 2012 Publication year: 2012 Source:European Journal of Cell Biology, Volume 91, Issue 4</br> </br> Structural biology is developing into a universal tool for visualizing biological processes in space and time at atomic resolution. The field has been built by established methodology like X-ray crystallography, electron microscopy and solution NMR and is now incorporating new techniques, such as small-angle X-ray scattering, electron tomography, magic-angle-spinning solid-state...
nmrlearner Journal club 0 02-03-2013 10:13 AM
3D DUMAS: Simultaneous Acquisition of Three-Dimensional Magic Angle Spinning Solid-State NMR Experiments of Proteins
3D DUMAS: Simultaneous Acquisition of Three-Dimensional Magic Angle Spinning Solid-State NMR Experiments of Proteins Publication year: 2012 Source:Journal of Magnetic Resonance</br> T. Gopinath, Gianluigi Veglia</br> Using the DUMAS (Dual acquisition Magic Angle Spinning) solid-state NMR approach, we created new pulse schemes that enable the simultaneous acquisition of three dimensional (3D) experiments on uniformly 13C, 15N labeled proteins. These new experiments exploit the simultaneous cross-polarization (SIM-CP) from 1H to 13C and 15N to acquire two 3D experiments...
nmrlearner Journal club 0 04-26-2012 08:10 PM
Membrane binding of an acyl-lactoferricin B antimicrobial peptide from solid-state NMR experiments and molecular dynamics simulations.
Membrane binding of an acyl-lactoferricin B antimicrobial peptide from solid-state NMR experiments and molecular dynamics simulations. Membrane binding of an acyl-lactoferricin B antimicrobial peptide from solid-state NMR experiments and molecular dynamics simulations. Biochim Biophys Acta. 2011 Aug;1808(8):2019-30 Authors: Romo TD, Bradney LA, Greathouse DV, Grossfield A Abstract One approach to the growing health problem of antibiotic resistant bacteria is the development of antimicrobial peptides (AMPs) as alternative treatments. The...
nmrlearner Journal club 0 08-19-2011 02:56 PM
Combined Use of Replica-Exchange Molecular Dynamics and Magic-Angle-Spinning Solid-State NMR Spectral Simulations for Determining the Structure and Orientation of Membrane-Bound Peptide.
Combined Use of Replica-Exchange Molecular Dynamics and Magic-Angle-Spinning Solid-State NMR Spectral Simulations for Determining the Structure and Orientation of Membrane-Bound Peptide. Combined Use of Replica-Exchange Molecular Dynamics and Magic-Angle-Spinning Solid-State NMR Spectral Simulations for Determining the Structure and Orientation of Membrane-Bound Peptide. J Phys Chem B. 2011 Jun 13; Authors: Ikeda K, Kameda T, Harada E, Akutsu H, Fujiwara T We report an approach to determining membrane-peptides and -protein complex structures by...
nmrlearner Journal club 0 06-15-2011 01:15 PM
[NMR paper] Determination of membrane protein structure and dynamics by magic-angle-spinning solid-state NMR spectroscopy.
Determination of membrane protein structure and dynamics by magic-angle-spinning solid-state NMR spectroscopy. Related Articles Determination of membrane protein structure and dynamics by magic-angle-spinning solid-state NMR spectroscopy. J Am Chem Soc. 2005 Sep 21;127(37):12965-74 Authors: Andronesi OC, Becker S, Seidel K, Heise H, Young HS, Baldus M It is shown that molecular structure and dynamics of a uniformly labeled membrane protein can be studied under magic-angle-spinning conditions. For this purpose, dipolar recoupling experiments...
nmrlearner Journal club 0 12-01-2010 06:56 PM
[NMR paper] Solid-state magic-angle spinning NMR of outer-membrane protein G from Escherichia coli.
Solid-state magic-angle spinning NMR of outer-membrane protein G from Escherichia coli. Related Articles Solid-state magic-angle spinning NMR of outer-membrane protein G from Escherichia coli. Chembiochem. 2005 Sep;6(9):1679-84 Authors: Hiller M, Krabben L, Vinothkumar KR, Castellani F, van Rossum BJ, Kühlbrandt W, Oschkinat H Uniformly 13C-,15N-labelled outer-membrane protein G (OmpG) from Escherichia coli was expressed for structural studies by solid-state magic-angle spinning (MAS) NMR. Inclusion bodies of the recombinant, labelled protein...
nmrlearner Journal club 0 12-01-2010 06:56 PM
[NMR paper] Probing membrane protein orientation and structure using fast magic-angle-spinning so
Probing membrane protein orientation and structure using fast magic-angle-spinning solid-state NMR. Related Articles Probing membrane protein orientation and structure using fast magic-angle-spinning solid-state NMR. J Biomol NMR. 2004 Nov;30(3):253-65 Authors: Andronesi OC, Pfeifer JR, Al-Momani L, Ozdirekcan S, Rijkers DT, Angerstein B, Luca S, Koert U, Killian JA, Baldus M One and two-dimensional solid-state NMR experiments are discussed that permit probing local structure and overall molecular conformation of membrane-embedded polypeptides...
nmrlearner Journal club 0 11-24-2010 10:03 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 11:08 AM.


Map