BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 10-04-2020, 05:33 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,187
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Optimized selection of slow-relaxing 13 C transitions in methyl groups of proteins: application to relaxation dispersion

Optimized selection of slow-relaxing 13 C transitions in methyl groups of proteins: application to relaxation dispersion

Abstract


Optimized selection of the slow-relaxing components of single-quantum 13C magnetization in 13CH3 methyl groups of proteins using acute (
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Application Note: Isotope Labeling of Alanine Methyl Groups for NMR Studies of High-Molecular-Weight Proteins - SelectScience
Application Note: Isotope Labeling of Alanine Methyl Groups for NMR Studies of High-Molecular-Weight Proteins - SelectScience <img alt="" height="1" width="1"> Application Note: Isotope Labeling of Alanine Methyl Groups for NMR Studies of High-Molecular-Weight Proteins SelectScience Labeling schemes commonly employed for NMR investigations of high-molecular-weight proteins utilize selective incorporation of protons and 13C isotopes into methyl groups of Ileδ1, Leuδ and Valγ side-chains in a highly deuterated environment (commonly ... Read here
nmrlearner Online News 0 08-08-2017 10:10 AM
Longitudinal relaxation optimized amide 1 H-CEST experiments for studying slow chemical exchange processes in fully protonated proteins
Longitudinal relaxation optimized amide 1 H-CEST experiments for studying slow chemical exchange processes in fully protonated proteins Abstract Chemical Exchange Saturation Transfer (CEST) experiments are increasingly used to study slow timescale exchange processes in biomolecules. Although 15N- and 13C-CEST have been the approaches of choice, the development of spin state selective 1H-CEST pulse sequences that separate the effects of chemical and dipolar exchange significantly increases the utility of 1H-based experiments. Pulse schemes have been...
nmrlearner Journal club 0 03-30-2017 06:42 PM
Off-resonance rotating-frame relaxation dispersion experiment for 13C in aromatic side chains using L-optimized TROSY-selection
Off-resonance rotating-frame relaxation dispersion experiment for 13C in aromatic side chains using L-optimized TROSY-selection Abstract Protein dynamics on the microsecondâ??millisecond time scales often play a critical role in biological function. NMR relaxation dispersion experiments are powerful approaches for investigating biologically relevant dynamics with site-specific resolution, as shown by a growing number of publications on enzyme catalysis, protein folding, ligand binding, and allostery. To date, the majority of studies has probed the...
nmrlearner Journal club 0 06-19-2014 10:21 PM
Observation and Relaxation Properties of Individual Fast-Relaxing Proton Transitions in [13CH3]-Methyl-Labeled, Deuterated Proteins
Observation and Relaxation Properties of Individual Fast-Relaxing Proton Transitions in -Methyl-Labeled, Deuterated Proteins Publication year: 2012 Source:Journal of Magnetic Resonance</br> Hechao Sun, Vitali Tugarinov</br> A pair of NMR experiments is developed for separation of individual fast-relaxing transitions in 13CH3 methyl groups of methyl-protonated, highly deuterated proteins, and the measurement of their relaxation rates. Intra-methyl 1H-1H/1H-13C dipole-dipole cross-correlated spin relaxation that differentiates the rates of the fast-relaxing transitions...
nmrlearner Journal club 0 03-09-2012 09:16 AM
Observation and Relaxation Properties of Individual Fast-Relaxing Proton Transitions in [CH3]-Methyl-Labeled, Deuterated Proteins
Observation and Relaxation Properties of Individual Fast-Relaxing Proton Transitions in -Methyl-Labeled, Deuterated Proteins Publication year: 2012 Source: Journal of Magnetic Resonance, Available online 2 March 2012</br> Hechao*Sun, Vitali*Tugarinov</br> A pair of NMR experiments is developed for separation of individual fast-relaxing transitions inCH3methyl groups of methyl-protonated, highly deuterated proteins, and the measurement of their relaxation rates. Intra-methylH-H/H-C dipole-dipole cross-correlated spin relaxation that differentiates the rates of the fast-relaxing...
nmrlearner Journal club 0 03-06-2012 06:04 AM
An optimized isotopic labelling strategy of isoleucine-?(2) methyl groups for solution NMR studies of high molecular weight proteins.
An optimized isotopic labelling strategy of isoleucine-?(2) methyl groups for solution NMR studies of high molecular weight proteins. An optimized isotopic labelling strategy of isoleucine-?(2) methyl groups for solution NMR studies of high molecular weight proteins. Chem Commun (Camb). 2011 Jul 26; Authors: Ayala I, Hamelin O, Amero C, Pessey O, Plevin MJ, Gans P, Boisbouvier J An efficient synthetic route is proposed to produce 2-hydroxy-2-ethyl-3-oxobutanoate for the specific labelling of Ile methyl-?(2) groups in proteins. The (2)H,...
nmrlearner Journal club 0 07-28-2011 10:51 AM
[NMR paper] Relaxation-optimized NMR spectroscopy of methylene groups in proteins and nucleic aci
Relaxation-optimized NMR spectroscopy of methylene groups in proteins and nucleic acids. Related Articles Relaxation-optimized NMR spectroscopy of methylene groups in proteins and nucleic acids. J Am Chem Soc. 2004 Sep 1;126(34):10560-70 Authors: Miclet E, Williams Jr DC, Clore GM, Bryce DL, Boisbouvier J, Bax A A large fraction of hydrogens in proteins and nucleic acids is of the methylene type. Their detailed study, however, in terms of structure and dynamics by NMR spectroscopy is hampered by their fast relaxation properties, which give...
nmrlearner Journal club 0 11-24-2010 10:01 PM
[NMR paper] Slow internal dynamics in proteins: application of NMR relaxation dispersion spectros
Slow internal dynamics in proteins: application of NMR relaxation dispersion spectroscopy to methyl groups in a cavity mutant of T4 lysozyme. Related Articles Slow internal dynamics in proteins: application of NMR relaxation dispersion spectroscopy to methyl groups in a cavity mutant of T4 lysozyme. J Am Chem Soc. 2002 Feb 20;124(7):1443-51 Authors: Mulder FA, Hon B, Mittermaier A, Dahlquist FW, Kay LE Recently developed carbon transverse relaxation dispersion experiments (Skrynnikov, N. R.; et al. J. Am. Chem. Soc. 2001, 123, 4556-4566) were...
nmrlearner Journal club 0 11-24-2010 08:49 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 10:14 PM.


Map