BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 04-26-2016, 12:03 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,135
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Observing a late folding intermediate of Ubiquitin at atomic resolution by NMR

Observing a late folding intermediate of Ubiquitin at atomic resolution by NMR

Abstract

The study of intermediates in the protein folding pathway provides a wealth of information about the energy landscape. The intermediates also frequently initiate pathogenic fibril formations. While observing the intermediates is difficult due to their transient nature, extreme conditions can partially unfold the proteins and provide a glimpse of the intermediate states. Here, we observe the high resolution structure of a hydrophobic core mutant of Ubiquitin at an extreme acidic pH by Nuclear Magnetic Resonance (NMR) spectroscopy. In the structure, the native secondary and tertiary structure is conserved for a major part of the protein. However, a long loop between the beta strands ?3 and ?5 is partially unfolded. The altered structure is supported by fluorescence data and the difference in free energies between the native state and the intermediate is reflected in the denaturant induced melting curves. The unfolded region includes amino acids that are critical for interaction with co-factors as well as for assembly of poly-Ubiquitin chains. The structure at acidic pH resembles a late folding intermediate of Ubiquitin and indicates that upon stabilization of the protein's core, the long loop converges on the core in the final step of the folding process. This article is protected by copyright. All rights reserved.




More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] In-Cell NMR Spectroscopy-In vivo Monitoring of the Structure, Dynamics, Folding, and Interactions of Proteins at Atomic Resolution.
In-Cell NMR Spectroscopy-In vivo Monitoring of the Structure, Dynamics, Folding, and Interactions of Proteins at Atomic Resolution. In-Cell NMR Spectroscopy-In vivo Monitoring of the Structure, Dynamics, Folding, and Interactions of Proteins at Atomic Resolution. J Anal Bioanal Tech. 2013 Jan 2;4(1):e112 Authors: Kumar TK, Thurman R, Jayanthi S PMID: 23956945
nmrlearner Journal club 0 08-21-2013 08:49 PM
19F NMR Studies of a Desolvated Near-NativeProtein Folding Intermediate
19F NMR Studies of a Desolvated Near-NativeProtein Folding Intermediate http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/bichaw/0/bichaw.ahead-of-print/bi4010057/aop/images/medium/bi-2013-010057_0009.gif Biochemistry DOI: 10.1021/bi4010057 http://feeds.feedburner.com/~ff/acs/bichaw?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/bichaw/~4/vbyk7XKtWBw More...
nmrlearner Journal club 0 08-16-2013 08:36 PM
Researchers Film Complex Process of Protein Folding At Atomic Resolution - AZoNano.com
<img alt="" height="1" width="1" /> Researchers Film Complex Process of Protein Folding At Atomic Resolution AZoNano.com We hoped that these quantities would be sufficient to examine the intermediate forms with nuclear magnetic resonance (NMR) spectroscopy," said Markus Zweckstetter, head of the research groups "Protein Structure Determination using MNR" at the MPIbpc ... and more &raquo; Researchers Film Complex Process of Protein Folding At Atomic Resolution - AZoNano.com More...
nmrlearner Online News 0 02-12-2013 11:00 AM
Nonnative Interactions in the FF Domain Folding Pathway from an Atomic Resolution Structure of a Sparsely Populated Intermediate: An NMR Relaxation Dispersion Study
Nonnative Interactions in the FF Domain Folding Pathway from an Atomic Resolution Structure of a Sparsely Populated Intermediate: An NMR Relaxation Dispersion Study Dmitry M. Korzhnev, Robert M. Vernon, Tomasz L. Religa, Alexandar L. Hansen, David Baker, Alan R. Fersht and Lewis E. Kay http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja203686t/aop/images/medium/ja-2011-03686t_0002.gif Journal of the American Chemical Society DOI: 10.1021/ja203686t http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA...
nmrlearner Journal club 0 06-29-2011 04:45 AM
Non-Native Interactions in the FF Domain Folding Pathway From an Atomic Resolution Structure of a Sparsely Populated Intermediate: An NMR Relaxation Dispersion Study.
Non-Native Interactions in the FF Domain Folding Pathway From an Atomic Resolution Structure of a Sparsely Populated Intermediate: An NMR Relaxation Dispersion Study. Non-Native Interactions in the FF Domain Folding Pathway From an Atomic Resolution Structure of a Sparsely Populated Intermediate: An NMR Relaxation Dispersion Study. J Am Chem Soc. 2011 Jun 6; Authors: Korzhnev DM, Vernon RM, Religa TL, Hansen AL, Baker D, Fersht AR, Kay LE Several all-helical single-domain proteins have been shown to fold rapidly (us timescale) to a compact...
nmrlearner Journal club 0 06-07-2011 11:05 AM
[NMR paper] A protein folding intermediate of ribonuclease T1 characterized at high resolution by
A protein folding intermediate of ribonuclease T1 characterized at high resolution by 1D and 2D real-time NMR spectroscopy. Related Articles A protein folding intermediate of ribonuclease T1 characterized at high resolution by 1D and 2D real-time NMR spectroscopy. J Mol Biol. 1999 Jan 15;285(2):829-42 Authors: Balbach J, Steegborn C, Schindler T, Schmid FX The rate-limiting step during the refolding of S54G/P55N ribonuclease T1 is determined by the slow trans-->cis prolyl isomerisation of Pro39. We investigated the refolding of this variant by...
nmrlearner Journal club 0 11-18-2010 07:05 PM
A Transient and Low-Populated Protein-Folding Intermediate at Atomic Resolution - Sec
A Transient and Low-Populated Protein-Folding Intermediate at Atomic Resolution - Securities Industry News (blog) (subscription) <img alt="" height="1" width="1" /> A Transient and Low-Populated Protein-Folding Intermediate at Atomic Resolution Securities Industry News (blog) (subscription) In this work, we used chemical shifts and bond-vector orientation constraints obtained from nuclear magnetic resonance relaxation dispersion spectroscopy, ... Read More
nmrlearner Online News 0 09-10-2010 12:48 AM
[NMR paper] Detection and characterization of a folding intermediate in barnase by NMR.
Detection and characterization of a folding intermediate in barnase by NMR. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.nature.com-images-lo_nature.gif Related Articles Detection and characterization of a folding intermediate in barnase by NMR. Nature. 1990 Aug 2;346(6283):488-90 Authors: Bycroft M, Matouschek A, Kellis JT, Serrano L, Fersht AR Protein engineering is being developed for mapping the energetics and pathway of protein folding. From kinetic studies on wild-type and mutant proteins, the sequence and energetics of...
nmrlearner Journal club 0 08-21-2010 11:04 PM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 08:04 PM.


Map