BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 04-02-2013, 07:23 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,137
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Nutrient-dependent structural changes in S. aureus peptidoglycan revealed by solid-state NMR spectroscopy.

Nutrient-dependent structural changes in S. aureus peptidoglycan revealed by solid-state NMR spectroscopy.

Related Articles Nutrient-dependent structural changes in S. aureus peptidoglycan revealed by solid-state NMR spectroscopy.

Biochemistry. 2012 Oct 16;51(41):8143-53

Authors: Zhou X, Cegelski L

Abstract
The bacterial cell wall is essential to cell survival and is a major target of antibiotics. The main component of the bacterial cell wall is peptidoglycan, a cage-like macromolecule that preserves cellular integrity and maintains cell shape. The insolubility and heterogeneity of peptidoglycan pose a challenge to conventional structural analyses. Here we use solid-state NMR combined with specific isotopic labeling to probe a key structural feature of the Staphylococcus aureus peptidoglycan quantitatively and nondestructively. We observed that both the cell-wall morphology and the peptidoglycan structure are functions of growth stage in S. aureus synthetic medium (SASM). Specifically, S. aureus cells at stationary phase have thicker cell walls with nonuniformly thickened septa compared to cells in exponential phase, and remarkably, 12% (±2%) of the stems in their peptidoglycan do not have pentaglycine bridges attached. Mechanistically, we determined that these observations are triggered by the depletion of glycine in the nutrient medium, which is coincident with the start of the stationary phase, and that the production of the structurally altered peptidoglycan can be prevented by the addition of excess glycine. We also demonstrated that the structural changes primarily arise within newly synthesized peptidoglycan rather than through the modification of previously synthesized peptidoglycan. Collectively, our observations emphasize the plasticity in bacterial cell-wall assembly and the possibility to manipulate peptidoglycan structure with external stimuli.


PMID: 22974326 [PubMed - indexed for MEDLINE]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Nutrient-Dependent StructuralChanges in S.aureus Peptidoglycan Revealed by Solid-State NMR Spectroscopy
Nutrient-Dependent StructuralChanges in S.aureus Peptidoglycan Revealed by Solid-State NMR Spectroscopy http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/bichaw/0/bichaw.ahead-of-print/bi3012115/aop/images/medium/bi-2012-012115_0011.gif Biochemistry DOI: 10.1021/bi3012115 http://feeds.feedburner.com/~ff/acs/bichaw?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/bichaw/~4/KQGbaoLxmUQ More...
nmrlearner Journal club 0 10-02-2012 06:32 PM
Self-Assembly of Flexible?-Strands into ImmobileAmyloid-Like ?-Sheets in MembranesAs Revealed by Solid-State 19F NMR
Self-Assembly of Flexible?-Strands into ImmobileAmyloid-Like ?-Sheets in MembranesAs Revealed by Solid-State 19F NMR Parvesh Wadhwani, Erik Strandberg, Nico Heidenreich, Jochen Bu?rck, Susanne Fangha?nel and Anne S. Ulrich http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja301328f/aop/images/medium/ja-2012-01328f_0005.gif Journal of the American Chemical Society DOI: 10.1021/ja301328f http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/dpJwN953qQE
nmrlearner Journal club 0 04-06-2012 01:23 AM
Redox-dependent conformational changes in eukaryotic cytochromes revealed by paramagnetic NMR spectroscopy
Redox-dependent conformational changes in eukaryotic cytochromes revealed by paramagnetic NMR spectroscopy Abstract Cytochrome c (Cc) is a soluble electron carrier protein, transferring reducing equivalents between Cc reductase and Cc oxidase in eukaryotes. In this work, we assessed the structural differences between reduced and oxidized Cc in solution by paramagnetic NMR spectroscopy. First, we have obtained nearly-complete backbone NMR resonance assignments for iso-1-yeast Cc and horse Cc in both oxidation states. These were further used to derive pseudocontact shifts (PCSs) arising...
nmrlearner Journal club 0 02-13-2012 02:34 AM
Structural Characterization of Polyglutamine Fibrils by Solid-State NMR Spectroscopy.
Structural Characterization of Polyglutamine Fibrils by Solid-State NMR Spectroscopy. Structural Characterization of Polyglutamine Fibrils by Solid-State NMR Spectroscopy. J Mol Biol. 2011 Jul 13; Authors: Schneider R, Schumacher MC, Mueller H, Nand D, Klaukien V, Heise H, Riedel D, Wolf G, Behrmann E, Raunser S, Seidel R, Engelhard M, Baldus M Protein aggregation via polyglutamine stretches occurs in a number of severe neurodegenerative diseases such as Huntington's disease. We have investigated fibrillar aggregates of polyglutamine peptides...
nmrlearner Journal club 0 07-19-2011 07:52 PM
The structural and topological analysis of membrane-associated polypeptides by oriented solid-state NMR spectroscopy: Established concepts and novel developments.
The structural and topological analysis of membrane-associated polypeptides by oriented solid-state NMR spectroscopy: Established concepts and novel developments. The structural and topological analysis of membrane-associated polypeptides by oriented solid-state NMR spectroscopy: Established concepts and novel developments. Biophys Chem. 2010 Nov 12; Authors: Bechinger B, Resende JM, Aisenbrey C Solid-state NMR spectroscopy is a powerful technique for the investigation of membrane-associated peptides and proteins as well as their interactions with...
nmrlearner Journal club 0 12-15-2010 12:03 PM
[NMR paper] Magic angle spinning solid-state NMR spectroscopy for structural studies of protein i
Magic angle spinning solid-state NMR spectroscopy for structural studies of protein interfaces. resonance assignments of differentially enriched Escherichia coli thioredoxin reassembled by fragment complementation. Related Articles Magic angle spinning solid-state NMR spectroscopy for structural studies of protein interfaces. resonance assignments of differentially enriched Escherichia coli thioredoxin reassembled by fragment complementation. J Am Chem Soc. 2004 Dec 22;126(50):16608-20 Authors: Marulanda D, Tasayco ML, McDermott A, Cataldi M, Arriaran V,...
nmrlearner Journal club 0 11-24-2010 10:03 PM
[NMR paper] Structural studies of biomaterials using double-quantum solid-state NMR spectroscopy.
Structural studies of biomaterials using double-quantum solid-state NMR spectroscopy. Related Articles Structural studies of biomaterials using double-quantum solid-state NMR spectroscopy. Annu Rev Phys Chem. 2003;54:531-71 Authors: Drobny GP, Long JR, Karlsson T, Shaw W, Popham J, Oyler N, Bower P, Stringer J, Gregory D, Mehta M, Stayton PS Proteins directly control the nucleation and growth of biominerals, but the details of molecular recognition at the protein-biomineral interface remain poorly understood. The elucidation of recognition...
nmrlearner Journal club 0 11-24-2010 08:49 PM
[NMR paper] Solid-state NMR evidence for an antibody-dependent conformation of the V3 loop of HIV
Solid-state NMR evidence for an antibody-dependent conformation of the V3 loop of HIV-1 gp120. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.nature.com-images-lo_nsb.gif Related Articles Solid-state NMR evidence for an antibody-dependent conformation of the V3 loop of HIV-1 gp120. Nat Struct Biol. 1999 Feb;6(2):141-5 Authors: Weliky DP, Bennett AE, Zvi A, Anglister J, Steinbach PJ, Tycko R Solid-state NMR measurements have been carried out on frozen solutions of the complex of a 24-residue peptide derived from the third variable...
nmrlearner Journal club 0 08-21-2010 04:03 PM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 11:40 AM.


Map