BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 10-16-2015, 01:44 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,134
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default A Novel MHC-I Surface Targeted for Binding by the MCMV m06 Immunoevasin Revealed by Solution NMR.

A Novel MHC-I Surface Targeted for Binding by the MCMV m06 Immunoevasin Revealed by Solution NMR.

Related Articles A Novel MHC-I Surface Targeted for Binding by the MCMV m06 Immunoevasin Revealed by Solution NMR.

J Biol Chem. 2015 Oct 13;

Authors: Sgourakis NG, May NA, Boyd LF, Ying J, Bax A, Margulies DH

Abstract
As part of its strategy to evade detection by the host immune system, murine cytomegalovirus (MCMV) encodes three proteins that modulate cell surface expression of major histocompatibility complex class I (MHC-I) molecules: the MHC-I homolog m152/gp40, as well as the m02-m16 family members m04/gp34 and m06/gp48. Previous studies of the m04 protein revealed a divergent immunoglobulin (Ig)-like fold that is unique to immunoevasins of the m02-m16 family. Here, we engineer and characterize recombinant m06 and investigate its interactions with full length and truncated forms of the MHC-I molecule H2-L(d) by several techniques. Furthermore, we employ solution NMR to map the interaction footprint of the m06 protein on MHC-I, taking advantage of a truncated H2-L(d), "mini-H2-L(d)", consisting of only the ?1?2 platform domain. Mini-H2-L(d), refolded in vitro with a high-affinity peptide yields a molecule that shows outstanding NMR spectral features, permitting complete backbone assignments. These NMR-based studies reveal that m06 binds tightly to a discrete site located under the peptide-binding platform that partially overlaps with the ?2-microglobulin (?2m) interface on the MHC-I heavy chain, consistent with in vitro binding experiments showing significantly reduced complex formation between m06 and ?2m-associated MHC-I. Moreover, we carry out NMR relaxation experiments to characterize the ps-ns dynamics of the free mini-H2-L(d) MHC-I molecule, revealing that the site of interaction is highly ordered. This study provides insight into the mechanism of the interaction of m06 with MHC-I, suggesting a structural manipulation of the target MHC-I molecule at an early stage of the peptide-loading pathway.


PMID: 26463211 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Binding hotspots of BAZ2B bromodomain: Histone interaction revealed by solution NMR driven docking.
Binding hotspots of BAZ2B bromodomain: Histone interaction revealed by solution NMR driven docking. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-pubmed-acs_authorchoice.jpg http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-pubmed-acspubs.jpg Related Articles Binding hotspots of BAZ2B bromodomain: Histone interaction revealed by solution NMR driven docking. Biochemistry. 2014 Oct 28;53(42):6706-16 Authors: Ferguson FM, Dias DM, Rodrigues JP, Wienk H, Boelens R,...
nmrlearner Journal club 0 12-17-2014 09:43 PM
[NMR paper] Unique Structure and Dynamics of the EphA5 Ligand Binding Domain Mediate Its Binding Specificity as Revealed by X-ray Crystallography, NMR and MD Simulations.
Unique Structure and Dynamics of the EphA5 Ligand Binding Domain Mediate Its Binding Specificity as Revealed by X-ray Crystallography, NMR and MD Simulations. Unique Structure and Dynamics of the EphA5 Ligand Binding Domain Mediate Its Binding Specificity as Revealed by X-ray Crystallography, NMR and MD Simulations. PLoS One. 2013;8(9):e74040 Authors: Huan X, Shi J, Lim L, Mitra S, Zhu W, Qin H, Pasquale EB, Song J Abstract The 16 EphA and EphB receptors represent the largest family of receptor tyrosine kinases, and their interactions...
nmrlearner Journal club 0 10-03-2013 03:31 PM
NMR characterizations of the ice binding surface of an antifreeze protein.
NMR characterizations of the ice binding surface of an antifreeze protein. NMR characterizations of the ice binding surface of an antifreeze protein. PLoS One. 2010;5(12):e15682 Authors: Hong J, Hu Y, Li C, Jia Z, Xia B, Jin C Antifreeze protein (AFP) has a unique function of reducing solution freezing temperature to protect organisms from ice damage. However, its functional mechanism is not well understood. An intriguing question concerning AFP function is how the high selectivity for ice ligand is achieved in the presence of free water of...
nmrlearner Journal club 0 01-07-2011 11:21 PM
[NMR paper] Identification of the DNA binding surface of H-NS protein from Escherichia coli by he
Identification of the DNA binding surface of H-NS protein from Escherichia coli by heteronuclear NMR spectroscopy. Related Articles Identification of the DNA binding surface of H-NS protein from Escherichia coli by heteronuclear NMR spectroscopy. FEBS Lett. 1999 Jul 16;455(1-2):63-9 Authors: Shindo H, Ohnuki A, Ginba H, Katoh E, Ueguchi C, Mizuno T, Yamazaki T The DNA binding domain of H-NS protein was studied with various N-terminal deletion mutant proteins and identified by gel retardation assay and heteronuclear 2D- and 3D-NMR...
nmrlearner Journal club 0 11-18-2010 08:31 PM
[NMR paper] Identification by NMR of the binding surface for the histidine-containing phosphocarr
Identification by NMR of the binding surface for the histidine-containing phosphocarrier protein HPr on the N-terminal domain of enzyme I of the Escherichia coli phosphotransferase system. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-acspubs.jpg Related Articles Identification by NMR of the binding surface for the histidine-containing phosphocarrier protein HPr on the N-terminal domain of enzyme I of the Escherichia coli phosphotransferase system. Biochemistry. 1997 Apr 15;36(15):4393-8 Authors: Garrett DS, Seok YJ,...
nmrlearner Journal club 0 08-22-2010 03:31 PM
[NMR paper] Identification by NMR of the binding surface for the histidine-containing phosphocarr
Identification by NMR of the binding surface for the histidine-containing phosphocarrier protein HPr on the N-terminal domain of enzyme I of the Escherichia coli phosphotransferase system. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-acspubs.jpg Related Articles Identification by NMR of the binding surface for the histidine-containing phosphocarrier protein HPr on the N-terminal domain of enzyme I of the Escherichia coli phosphotransferase system. Biochemistry. 1997 Apr 15;36(15):4393-8 Authors: Garrett DS, Seok YJ,...
nmrlearner Journal club 0 08-22-2010 03:03 PM
[NMR paper] The identification of cation-binding domains on the surface of microsomal cytochrome
The identification of cation-binding domains on the surface of microsomal cytochrome b5 using 1H-NMR paramagnetic difference spectroscopy. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif Related Articles The identification of cation-binding domains on the surface of microsomal cytochrome b5 using 1H-NMR paramagnetic difference spectroscopy. Eur J Biochem. 1992 Jan 15;203(1-2):211-23 Authors: Whitford D One-dimensional and two-dimensional 1H-NMR...
nmrlearner Journal club 0 08-21-2010 11:41 PM
[NMR paper] Identification of the single-stranded DNA binding surface of the transcriptional coac
Identification of the single-stranded DNA binding surface of the transcriptional coactivator PC4 by NMR. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--highwire.stanford.edu-icons-externalservices-pubmed-standard-jbc_full_free.gif Related Articles Identification of the single-stranded DNA binding surface of the transcriptional coactivator PC4 by NMR. J Biol Chem. 1999 Feb 5;274(6):3693-9 Authors: Werten S, Wechselberger R, Boelens R, van der Vliet PC, Kaptein R The C-terminal domain of the eukaryotic transcriptional cofactor PC4...
nmrlearner Journal club 0 08-21-2010 04:03 PM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 11:16 AM.


Map