BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 08-28-2020, 02:27 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,135
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Non-stationary complementary non-uniform sampling (NOSCO NUS) for fast acquisition of serial 2D NMR titration data.

Non-stationary complementary non-uniform sampling (NOSCO NUS) for fast acquisition of serial 2D NMR titration data.

Related Articles Non-stationary complementary non-uniform sampling (NOSCO NUS) for fast acquisition of serial 2D NMR titration data.

Angew Chem Int Ed Engl. 2020 Aug 27;:

Authors: Romero JA, Nawrocka EK, Shchukina A, Blanco FJ, Diercks T, Kazimierczuk K

Abstract
NMR spectroscopy offers unique benefits for ligand binding studies on isotopically labelled target proteins, such as atomic resolution, direct distinction of binding sites and modes, lowest detectable affinity limit, and function independent setup. Yet, retracing protein signal assignments from apo *to holo *states to derive exact dissociation constants and Chemical Shift Perturbation *amplitudes (for ligand docking and structure-based optimization) requires lengthy titration series of 2D heteronuclear correlation spectra at variable ligand concentration that may exceed the protein's lifetime and available spectrometer time. We present a novel method to overcome this critical limitation, based on non-stationary complementary non-uniform sampling (NOSCO NUS) combined with a robust particle swarm algorithm. We illustrate its potential in two challenging studies with very distinct protein size and binding affinities, showing that NOSCO NUS can reduce measurement times by an order of magnitude to make such highly informative NMR titration studies more broadly feasible.


PMID: 32852098 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Non-stationary complementary non-uniform sampling (NOSCO NUS) for fast acquisition of serial 2D NMR titration data
Non-stationary complementary non-uniform sampling (NOSCO NUS) for fast acquisition of serial 2D NMR titration data Angewandte Chemie International Edition, Accepted Article. More...
nmrlearner Journal club 0 08-27-2020 07:27 PM
[NMR paper] Lipid-nanodiscs formed by paramagnetic metal chelated polymer for fast NMR data acquisition.
Lipid-nanodiscs formed by paramagnetic metal chelated polymer for fast NMR data acquisition. Related Articles Lipid-nanodiscs formed by paramagnetic metal chelated polymer for fast NMR data acquisition. Biochim Biophys Acta Biomembr. 2020 Apr 30;:183332 Authors: Di Mauro GM, Hardin NZ, Ramamoorthy A Abstract Lipid-nanodiscs have been shown to be an exciting innovation as a membrane-mimicking system for studies on membrane proteins by a variety of biophysical techniques, including NMR spectroscopy. Although NMR spectroscopy is...
nmrlearner Journal club 0 05-05-2020 04:08 AM
Joint non-uniform sampling of all incremented time delays for quicker acquisition in protein relaxation studies
Joint non-uniform sampling of all incremented time delays for quicker acquisition in protein relaxation studies Abstract NMR relaxometry plays crucial role in studies of protein dynamics. The measurement of longitudinal and transverse relaxation rates of \(^{15}\) N is the main source of information on backbone motions. However, even the most basic approach exploiting a series of \(^{15}\) ...
nmrlearner Journal club 0 05-16-2017 06:53 AM
[NMR paper] Entire-Dataset Analysis of NMR Fast-Exchange Titration Spectra: A Mg(2+) Titration Analysis for HIV-1 Ribonuclease H Domain.
Entire-Dataset Analysis of NMR Fast-Exchange Titration Spectra: A Mg(2+) Titration Analysis for HIV-1 Ribonuclease H Domain. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-pubmed-acspubs.jpg Related Articles Entire-Dataset Analysis of NMR Fast-Exchange Titration Spectra: A Mg(2+) Titration Analysis for HIV-1 Ribonuclease H Domain. J Phys Chem B. 2016 Dec 15;120(49):12420-12431 Authors: Karki I, Christen MT, Spiriti J, Slack RL, Oda M, Kanaori K, Zuckerman DM, Ishima R Abstract This...
nmrlearner Journal club 0 12-17-2016 07:18 AM
[U. of Ottawa NMR Facility Blog] Non-uniform Sampling (NUS)
Non-uniform Sampling (NUS) Collecting 2D or 3D NMR data can be very time consuming. The indirect dimension of a 2D experiment is sampled linearly via the t1 increments in the pulse sequence. An FID must be collected for every single linearly spaced t1 increment. In the interest in collecting 2D or 3D NMR data in a more time efficient manner, a great deal of effort is made towards faster data collection techniques. While some of these methods are based on spatial selectivity, others are based on sparse sampling techniques in the indirect dimensions of nD NMR sequences. One such sparse...
nmrlearner News from NMR blogs 0 05-11-2016 08:04 PM
[NMR paper] Non-uniform sampling of NMR relaxation data.
Non-uniform sampling of NMR relaxation data. Related Articles Non-uniform sampling of NMR relaxation data. J Biomol NMR. 2016 Feb 4; Authors: Linnet TE, Teilum K Abstract The use of non-uniform sampling of NMR spectra may give significant reductions in the data acquisition time. For quantitative experiments such as the measurement of spin relaxation rates, non-uniform sampling is however not widely used as inaccuracies in peak intensities may lead to errors in the extracted dynamic parameters. By systematic reducing the coverage...
nmrlearner Journal club 0 02-06-2016 03:10 PM
Non-uniform sampling of NMR relaxation data
Non-uniform sampling of NMR relaxation data Abstract The use of non-uniform sampling of NMR spectra may give significant reductions in the data acquisition time. For quantitative experiments such as the measurement of spin relaxation rates, non-uniform sampling is however not widely used as inaccuracies in peak intensities may lead to errors in the extracted dynamic parameters. By systematic reducing the coverage of the Nyquist grid of 15N Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion datasets for four different proteins and performing a full...
nmrlearner Journal club 0 02-05-2016 02:38 PM
Fast NMR Data Acquisition From Bicelles Containing a Membrane-Associated Peptide at Natural-Abundance.
Fast NMR Data Acquisition From Bicelles Containing a Membrane-Associated Peptide at Natural-Abundance. Fast NMR Data Acquisition From Bicelles Containing a Membrane-Associated Peptide at Natural-Abundance. J Phys Chem B. 2011 Sep 22; Authors: Yamamoto K, Vivekanandan S, Ramamoorthy A Abstract In spite of recent technological advances in NMR spectroscopy, its low sensitivity continues to be a major limitation particularly for the structural studies of membrane proteins. The need for a large quantity of a membrane protein and acquisition of...
nmrlearner Journal club 0 09-24-2011 04:11 PM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 01:42 AM.


Map