BioNMR

BioNMR (http://www.bionmr.com/forum/)
-   Journal club (http://www.bionmr.com/forum/journal-club-9/)
-   -   [NMR paper] NMR study of the cold, heat, and pressure unfolding of ribonuclease A. (http://www.bionmr.com/forum/journal-club-9/nmr-study-cold-heat-pressure-unfolding-ribonuclease-7242/)

nmrlearner 08-22-2010 03:50 AM

NMR study of the cold, heat, and pressure unfolding of ribonuclease A.
 
NMR study of the cold, heat, and pressure unfolding of ribonuclease A.

Related Articles NMR study of the cold, heat, and pressure unfolding of ribonuclease A.

Biochemistry. 1995 Jul 11;34(27):8631-41

Authors: Zhang J, Peng X, Jonas A, Jonas J

The reversible cold, heat, and pressure unfolding of RNase A and RNase A--inhibitor complex were studied by 1D and 2D 1H NMR spectroscopy. The reversible pressure denaturation experiments in the pressure range from 1 bar to 5 kbar were carried out at pH 2.0 and 10 degrees C. The cold denaturation was carried out at 3 kbar, where the protein solution can be cooled down to -25 degrees C without freezing. Including heat denaturation experiments, the experimental data obtained allowed us to construct the pressure--temperature phase diagram of RNase A. The experimental results suggest the possibility that all three denaturation processes (cold, heat, and pressure) lead to non-cooperative unfolding. The appearance of a new histidine resonance in the cold-denatured and pressure-denatured RNase A spectra, compared to the absence of this resonance in the heat-denatured state, indicates that the pressure-denatured and cold-denatured states may contain partially folded structures that are similar to that of the early folding intermediate found in the temperature-jump experiment reported by Blum et al. [Blum, A. D., et al. (1978) J. Mol. Biol. 118, 305]. A hydrogen-exchange experiment was performed to confirm the presence of partially folded structures in the pressure-denatured state. Stable hydrogen-bonded structures protecting the backbone amide hydrogens from solvent exchange were observed in the pressure-denatured state. These experimental results suggest that the pressure-denatured RNase A displays the characteristics of a the inhibitor 3'-UMP show that the RNase A-inhibitor complex is more stable than RNase without the inhibitor.

PMID: 7612603 [PubMed - indexed for MEDLINE]



Source: PubMed


All times are GMT. The time now is 11:12 AM.

Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Search Engine Friendly URLs by vBSEO 3.6.0
Copyright, BioNMR.com, 2003-2013