BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 08-21-2010, 11:53 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,135
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Prospects for NMR of large proteins.

Prospects for NMR of large proteins.

Related Articles Prospects for NMR of large proteins.

J Biomol NMR. 1993 Jul;3(4):375-85

Authors: Wagner G

During the last decade, solution structures of many small proteins have been solved by NMR. The size of proteins that are being analyzed by NMR seems to increase steadily. Protein structures up to 18 kD have been solved so far, and spectra of proteins up to 30 kD have been assigned. Thus, NMR emerges as an attractive technique, in particular for structural studies of proteins that cannot by crystallized. However, the application of the technology is limited by relaxation properties of the proteins. If relaxation would only be determined by Stokes-Einstein-type rotational diffusion, the effects of the molecular size on relaxation properties of proteins and thus on the performance of multi-dimensional multiple-resonance experiments could readily be estimated. From this perspective, solving two- or three-fold larger structures seems possible. However, most larger proteins exhibit serious line broadening due to aggregation or other still unknown effects. Sample conditioning to minimize these effects is presently the challenge in the work with large proteins.

PMID: 8400829 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
TROSY NMR Spectroscopy of Large Soluble Proteins.
TROSY NMR Spectroscopy of Large Soluble Proteins. TROSY NMR Spectroscopy of Large Soluble Proteins. Top Curr Chem. 2011 Sep 17; Authors: Xu Y, Matthews S Abstract Solution nuclear magnetic resonance spectroscopy is usually only used to study proteins with molecular weight not exceeding about 50 kDa. This size limit has been lifted significantly in recent years, thanks to the development of labelling methods and the application of transverse-relaxation optimized spectroscopy (TROSY). In particular, methyl-specific labelling and...
nmrlearner Journal club 0 09-20-2011 03:10 PM
Recent advances in segmental isotope labeling of proteins: NMR applications to large proteins and glycoproteins
Recent advances in segmental isotope labeling of proteins: NMR applications to large proteins and glycoproteins Abstract In the last 15 years substantial advances have been made to place isotope labels in native and glycosylated proteins for NMR studies and structure determination. Key developments include segmental isotope labeling using Native Chemical Ligation, Expressed Protein Ligation and Protein Trans-Splicing. These advances are pushing the size limit of NMR spectroscopy further making larger proteins accessible for this technique. It is just emerging that segmental isotope...
nmrlearner Journal club 0 01-09-2011 12:46 PM
[NMR paper] 3D NMR experiments for measuring 15N relaxation data of large proteins: application t
3D NMR experiments for measuring 15N relaxation data of large proteins: application to the 44 kDa ectodomain of SIV gp41. Related Articles 3D NMR experiments for measuring 15N relaxation data of large proteins: application to the 44 kDa ectodomain of SIV gp41. J Magn Reson. 1998 Dec;135(2):368-72 Authors: Caffrey M, Kaufman J, Stahl SJ, Wingfield PT, Gronenborn AM, Clore GM A suite of 3D NMR experiments for measuring 15N-¿1H¿ NOE, 15N T1, and 15N T1rho values in large proteins, uniformly labeled with 15N and 13C, is presented. These...
nmrlearner Journal club 0 11-17-2010 11:15 PM
[NMR paper] Determining the structures of large proteins and protein complexes by NMR.
Determining the structures of large proteins and protein complexes by NMR. Related Articles Determining the structures of large proteins and protein complexes by NMR. Trends Biotechnol. 1998 Jan;16(1):22-34 Authors: Clore GM, Gronenborn AM Recent advances in multidimensional NMR methodology to obtain 1H, 15N and 13C resonance assignments, interproton-distance and torsion-angle restraints, and restraints that characterize long-range order have, coupled with new methods of structure refinement, permitted solution structure of proteins in excess...
nmrlearner Journal club 0 11-17-2010 11:06 PM
[NMR paper] Characterizing the use of perdeuteration in NMR studies of large proteins: 13C, 15N a
Characterizing the use of perdeuteration in NMR studies of large proteins: 13C, 15N and 1H assignments of human carbonic anhydrase II. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Characterizing the use of perdeuteration in NMR studies of large proteins: 13C, 15N and 1H assignments of human carbonic anhydrase II. J Mol Biol. 1996 Dec 20;264(5):1101-16 Authors: Venters RA, Farmer BT, Fierke CA, Spicer LD Perdeuteration of all non-exchangeable proton sites can...
nmrlearner Journal club 0 08-22-2010 02:20 PM
[NMR tweet] Hadamard NMR spectroscopy for relaxation measurements of large (>35 kDa) proteins
Nuclear magnetic resonance lipoprotein subclasses and the apoe genotype influence carotid atheroscler... http://bit.ly/cHYtEg #Rheumatology Published by MDLinx (Sandeep Pulim MD) on 2010-08-16T07:24:44Z Source: Twitter
nmrlearner Twitter NMR 0 08-16-2010 02:01 AM
SAGA: rapid automatic mainchain NMR assignment for large proteins
Abstract Here we describe a new algorithm for automatically determining the mainchain sequential assignment of NMR spectra for proteins. Using only the customary triple resonance experiments, assignments can be quickly found for not only small proteins having rather complete data, but also for large proteins, even when only half the residues can be assigned. The result of the calculation is not the single best assignment according to some criterion, but rather a large number of satisfactory assignments that are summarized in such a way as to help the user identify portions of the sequence...
nmrlearner Journal club 0 08-14-2010 04:19 AM
Hadamard NMR spectroscopy for relaxation measurements of large (>35 kDa) proteins
Hadamard NMR spectroscopy for relaxation measurements of large (>35 kDa) proteins B. Tom Burnley, Arnout P. Kalverda, Stephen J. Paisey, Alan Berry and Steve W. Homans Journal of Biomolecular NMR; 2007; 39(3) pp 239 - 245 Abstract: Here we present a suite of pulse sequences for the measurement of 15N T1, T1ρ and NOE data that combine traditional TROSY-based pulse sequences with band-selective Hadamard frequency encoding. The additive nature of the Hadamard matrix produces much reduced resonance overlap without the need for an increase in the dimensionality of the experiment or a...
linawaed Journal club 0 08-04-2008 10:43 AM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 09:32 PM.


Map