BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 11-24-2010, 09:51 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,174
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default NMR structure of the thromboxane A2 receptor ligand recognition pocket.

NMR structure of the thromboxane A2 receptor ligand recognition pocket.

Related Articles NMR structure of the thromboxane A2 receptor ligand recognition pocket.

Eur J Biochem. 2004 Jul;271(14):3006-16

Authors: Ruan KH, Wu J, So SP, Jenkins LA, Ruan CH

To overcome the difficulty of characterizing the structures of the extracellular loops (eLPs) of G protein-coupled receptors (GPCRs) other than rhodopsin, we have explored a strategy to generate a three-dimensional structural model for a GPCR, the thromboxane A(2) receptor. This three-dimensional structure was completed by the assembly of the NMR structures of the computation-guided constrained peptides that mimicked the extracellular loops and connected to the conserved seven transmembrane domains. The NMR structure-based model reveals the structural features of the eLPs, in which the second extracellular loop (eLP(2)) and the disulfide bond between the first extracellular loop (eLP(1)) and eLP(2) play a major role in forming the ligand recognition pocket. The eLP(2) conformation is dynamic and regulated by the oxidation and reduction of the disulfide bond, which affects ligand docking in the initial recognition. The reduced form of the thromboxane A(2) receptor experienced a decrease in ligand binding activity due to the rearrangement of the eLP(2) conformation. The ligand-bound receptor was, however, resistant to the reduction inactivation because the ligand covered the disulfide bond and stabilized the eLP(2) conformation. This molecular mechanism of ligand recognition is the first that may be applied to other prostanoid receptors and other GPCRs.

PMID: 15233797 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Over-expression and purification of isotopically labeled recombinant ligand-binding domain of orphan nuclear receptor human B1-binding factor/human liver receptor homologue 1 for NMR studies.
Over-expression and purification of isotopically labeled recombinant ligand-binding domain of orphan nuclear receptor human B1-binding factor/human liver receptor homologue 1 for NMR studies. Related Articles Over-expression and purification of isotopically labeled recombinant ligand-binding domain of orphan nuclear receptor human B1-binding factor/human liver receptor homologue 1 for NMR studies. Protein Expr Purif. 2006 Jan;45(1):99-106 Authors: Chen X, Tong X, Xie Y, Wang Y, Ma J, Gao D, Wu H, Chen H The human hepatitis B virus enhancer II...
nmrlearner Journal club 0 12-01-2010 06:56 PM
[NMR paper] CORCEMA refinement of the bound ligand conformation within the protein binding pocket
CORCEMA refinement of the bound ligand conformation within the protein binding pocket in reversibly forming weak complexes using STD-NMR intensities. Related Articles CORCEMA refinement of the bound ligand conformation within the protein binding pocket in reversibly forming weak complexes using STD-NMR intensities. J Magn Reson. 2004 May;168(1):36-45 Authors: Jayalakshmi V, Rama Krishna N We describe an intensity-restrained optimization procedure for refining approximate structures of ligands within the protein binding pockets using STD-NMR...
nmrlearner Journal club 0 11-24-2010 09:51 PM
[NMR paper] Design of a functional protein for molecular recognition: specificity of ligand bindi
Design of a functional protein for molecular recognition: specificity of ligand binding in a metal-assembled protein cavity probed by 19f NMR. Related Articles Design of a functional protein for molecular recognition: specificity of ligand binding in a metal-assembled protein cavity probed by 19f NMR. J Am Chem Soc. 2004 Apr 7;126(13):4192-8 Authors: Doerr AJ, Case MA, Pelczer I, McLendon GL A metal-assembled homotrimeric coiled coil based on the GCN4-p1 sequence has been designed that noncovalently binds hexafluorobenzene and other similar...
nmrlearner Journal club 0 11-24-2010 09:51 PM
[NMR paper] Epitope mapping of ligand-receptor interactions by diffusion NMR.
Epitope mapping of ligand-receptor interactions by diffusion NMR. Related Articles Epitope mapping of ligand-receptor interactions by diffusion NMR. J Am Chem Soc. 2002 Aug 28;124(34):9984-5 Authors: Yan J, Kline AD, Mo H, Zartler ER, Shapiro MJ A novel method based on diffusion NMR for the epitope mapping of ligand binding is presented. The intermolecular NOE builds up during a long diffusion period and creates a deviation from the linearity. The ligand proton nearest the protein generates the strongest NOE from protein during the diffusion...
nmrlearner Journal club 0 11-24-2010 08:58 PM
[NMR paper] Probing the agonist binding pocket in the nicotinic acetylcholine receptor: a high-re
Probing the agonist binding pocket in the nicotinic acetylcholine receptor: a high-resolution solid-state NMR approach. Related Articles Probing the agonist binding pocket in the nicotinic acetylcholine receptor: a high-resolution solid-state NMR approach. Biochemistry. 1998 Jul 28;37(30):10854-9 Authors: Williamson PT, Gröbner G, Spooner PJ, Miller KW, Watts A Acetylcholine, the agonist for the nicotinic acetylcholine receptor, has been observed directly when bound specifically to its binding site in the fully functional receptor-enriched...
nmrlearner Journal club 0 11-17-2010 11:15 PM
[NMR paper] Dynamic NMR studies of ligand-receptor interactions: design and analysis of a rapidly
Dynamic NMR studies of ligand-receptor interactions: design and analysis of a rapidly exchanging complex of FKBP-12/FK506 with a 24 kDa calcineurin fragment. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles Dynamic NMR studies of ligand-receptor interactions: design and analysis of a rapidly exchanging complex of FKBP-12/FK506 with a 24 kDa calcineurin...
nmrlearner Journal club 0 08-22-2010 02:20 PM
[NMR paper] 1H NMR studies of DNA recognition by the glucocorticoid receptor: complex of the DNA
1H NMR studies of DNA recognition by the glucocorticoid receptor: complex of the DNA binding domain with a half-site response element. Related Articles 1H NMR studies of DNA recognition by the glucocorticoid receptor: complex of the DNA binding domain with a half-site response element. Biochemistry. 1991 Dec 17;30(50):11620-4 Authors: Remerowski ML, Kellenbach E, Boelens R, van der Marel GA, van Boom JH, Maler BA, Yamamoto KR, Kaptein R The complex of the rat glucocorticoid receptor (GR) DNA binding domain (DBD) and half-site sequence of the...
nmrlearner Journal club 0 08-21-2010 11:12 PM
[NMR paper] 1H NMR studies of DNA recognition by the glucocorticoid receptor: complex of the DNA
1H NMR studies of DNA recognition by the glucocorticoid receptor: complex of the DNA binding domain with a half-site response element. Related Articles 1H NMR studies of DNA recognition by the glucocorticoid receptor: complex of the DNA binding domain with a half-site response element. Biochemistry. 1991 Dec 17;30(50):11620-4 Authors: Remerowski ML, Kellenbach E, Boelens R, van der Marel GA, van Boom JH, Maler BA, Yamamoto KR, Kaptein R The complex of the rat glucocorticoid receptor (GR) DNA binding domain (DBD) and half-site sequence of the...
nmrlearner Journal club 0 08-21-2010 11:12 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 09:38 PM.


Map