BioNMR

BioNMR (http://www.bionmr.com/forum/)
-   Journal club (http://www.bionmr.com/forum/journal-club-9/)
-   -   [NMR paper] NMR structure of stem-loop SL2 of the HIV-1 psi RNA packaging signal reveals a novel (http://www.bionmr.com/forum/journal-club-9/nmr-structure-stem-loop-sl2-hiv-1-psi-rna-packaging-signal-reveals-novel-9307/)

nmrlearner 11-18-2010 09:15 PM

NMR structure of stem-loop SL2 of the HIV-1 psi RNA packaging signal reveals a novel
 
NMR structure of stem-loop SL2 of the HIV-1 psi RNA packaging signal reveals a novel A-U-A base-triple platform.

Related Articles NMR structure of stem-loop SL2 of the HIV-1 psi RNA packaging signal reveals a novel A-U-A base-triple platform.

J Mol Biol. 2000 May 26;299(1):145-56

Authors: Amarasinghe GK, De Guzman RN, Turner RB, Summers MF

The genome of the human immunodeficiency virus type-1 (HIV-1) contains a stretch of approximately 120 nucleotides known as the psi-site that is essential for RNA packaging during virus assembly. These nucleotides have been proposed to form four stem-loops (SL1-SL4) that have both independent and overlapping functions. Stem-loop SL2 is important for efficient recognition and packaging of the full-length, unspliced viral genome, and also contains the major splice-donor site (SD) for mRNA splicing. We have determined the structure of the 19-residue SL2 oligoribonucleotide by heteronuclear NMR methods. The structure is generally consistent with the most recent of two earlier secondary structure predictions, with residues G1-G2-C3-G4 and C6-U7 forming standard Watson Crick base-pairs with self-complementary residues C16-G17-C18-C19 and A12-G13, respectively. However, residue A15, which is located near the center of the stem, does not form a predicted bulge, and residues A5 and U14 do not form an expected Watson-Crick base-pair. Instead, these residues form a novel A5-U14-A15 base-triple that appears to be stabilized by hydrogen bonds from A15-H61 and -H62 to A5-N1 and U14-O2, respectively; from A5-H61 to U14-O2, and from C16-H42 to U14-O2'. A kink in the backbone allows the aromatic rings of the sequential U14-A15 residues to be approximately co-planar, adopting a stable "platform motif" that is structurally similar to the A-A (adenosine) platforms observed in the P4-P6 ribozyme domain of the Tetrahymena group I intron. Platform motifs generally function in RNA by mediating long-range interactions, and it is therefore possible that the A-U-A base-triple platform mediates long-range interactions that either stabilize the psi-RNA or facilitate splicing and/or packaging. Residue G8 of the G8-G9-U10-G11 tetraloop is stacked above the U7-A12 base-pair, and the remaining tetraloop residues are disordered and available for potential interactions with either other RNA or protein components.

PMID: 10860728 [PubMed - indexed for MEDLINE]



Source: PubMed


All times are GMT. The time now is 02:27 AM.

Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Search Engine Friendly URLs by vBSEO 3.6.0
Copyright, BioNMR.com, 2003-2013