BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 12-18-2010, 12:00 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,184
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default NMR structure of the calponin homology domain of human IQGAP1 and its implications for the actin recognition mode.

NMR structure of the calponin homology domain of human IQGAP1 and its implications for the actin recognition mode.

NMR structure of the calponin homology domain of human IQGAP1 and its implications for the actin recognition mode.

J Biomol NMR. 2010 Sep;48(1):59-64

Authors: Umemoto R, Nishida N, Ogino S, Shimada I



PMID: 20644981 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
NMR structure of CaBP1 in a Ca(2+) -bound closed state: Implications for target recognition.
NMR structure of CaBP1 in a Ca(2+) -bound closed state: Implications for target recognition. NMR structure of CaBP1 in a Ca(2+) -bound closed state: Implications for target recognition. Protein Sci. 2011 May 23; Authors: Park S, Li C, Ames JB Calcium binding protein 1 (CaBP1), a neuron-specific member of the calmodulin (CaM) superfamily, regulates the Ca(2+) dependent activity of inositol 1,4,5-triphosphate receptors (InsP3Rs) and various voltage-gated Ca(2+) channels. Here we present the NMR structure of full-length CaBP1 with Ca(2+) bound at the...
nmrlearner Journal club 0 05-25-2011 07:01 PM
The calponin regulatory region is intrinsically unstructured: novel insight into actin-calponin and calmodulin-calponin interfaces using NMR spectroscopy.
The calponin regulatory region is intrinsically unstructured: novel insight into actin-calponin and calmodulin-calponin interfaces using NMR spectroscopy. The calponin regulatory region is intrinsically unstructured: novel insight into actin-calponin and calmodulin-calponin interfaces using NMR spectroscopy. Biophys J. 2011 Apr 6;100(7):1718-28 Authors: Pfuhl M, Al-Sarayreh S, El-Mezgueldi M Calponin is an actin- and calmodulin-binding protein believed to regulate the function of actin. Low-resolution studies based on proteolysis established that...
nmrlearner Journal club 0 04-06-2011 10:54 AM
NMR reveals a different mode of binding of the Stam2 VHS domain to ubiquitin and diubiquitin.
NMR reveals a different mode of binding of the Stam2 VHS domain to ubiquitin and diubiquitin. Related Articles NMR reveals a different mode of binding of the Stam2 VHS domain to ubiquitin and diubiquitin. Biochemistry. 2010 Dec 1; Authors: Lange A, Hoeller D, Wienk H, Marcillat O, Lancelin JM, Walker O The VHS domain of the Stam2 protein is a ubiquitin binding domain involved in the recognition of ubiquitinated proteins committed to lysosomal degradation. Among all VHS domains, the VHS domain of Stam proteins is the strongest binder to...
nmrlearner Journal club 0 12-03-2010 08:52 PM
[NMR paper] NMR structure of the LCCL domain and implications for DFNA9 deafness disorder.
NMR structure of the LCCL domain and implications for DFNA9 deafness disorder. Related Articles NMR structure of the LCCL domain and implications for DFNA9 deafness disorder. EMBO J. 2001 Oct 1;20(19):5347-53 Authors: Liepinsh E, Trexler M, Kaikkonen A, Weigelt J, Bányai L, Patthy L, Otting G The LCCL domain is a recently discovered, conserved protein module named after its presence in Limulus factor C, cochlear protein Coch-5b2 and late gestation lung protein Lgl1. The LCCL domain plays a key role in the autosomal dominant human deafness...
nmrlearner Journal club 0 11-19-2010 08:44 PM
[NMR paper] NMR structure and mutagenesis of the N-terminal Dbl homology domain of the nucleotide
NMR structure and mutagenesis of the N-terminal Dbl homology domain of the nucleotide exchange factor Trio. Related Articles NMR structure and mutagenesis of the N-terminal Dbl homology domain of the nucleotide exchange factor Trio. Cell. 1998 Oct 16;95(2):269-77 Authors: Liu X, Wang H, Eberstadt M, Schnuchel A, Olejniczak ET, Meadows RP, Schkeryantz JM, Janowick DA, Harlan JE, Harris EA, Staunton DE, Fesik SW Guanine nucleotide exchange factors for the Rho family of GTPases contain a Dbl homology (DH) domain responsible for catalysis and a...
nmrlearner Journal club 0 11-17-2010 11:15 PM
[NMR paper] NMR studies of U1 snRNA recognition by the N-terminal RNP domain of the human U1A pro
NMR studies of U1 snRNA recognition by the N-terminal RNP domain of the human U1A protein. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles NMR studies of U1 snRNA recognition by the N-terminal RNP domain of the human U1A protein. EMBO J. 1994 Aug 15;13(16):3873-81 Authors: Howe PW, Nagai K, Neuhaus D, Varani G The RNP domain is a very common motif found in hundreds of proteins, including many protein components of the RNA processing machinery. The 70-90...
nmrlearner Journal club 0 08-22-2010 03:29 AM
[NMR paper] Secondary structure of Src homology 2 domain of c-Abl by heteronuclear NMR spectrosco
Secondary structure of Src homology 2 domain of c-Abl by heteronuclear NMR spectroscopy in solution. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles Secondary structure of Src homology 2 domain of c-Abl by heteronuclear NMR spectroscopy in solution. Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):11673-7 Authors: Overduin M, Mayer B, Rios CB, Baltimore D, Cowburn D The Src homology 2 (SH2) domain is a recognition motif thought to mediate the association of the...
nmrlearner Journal club 0 08-21-2010 11:45 PM
NMR structure of the calponin homology domain of human IQGAP1 and its implications fo
NMR structure of the calponin homology domain of human IQGAP1 and its implications for the actin recognition mode Content Type Journal Article DOI 10.1007/s10858-010-9434-8 Authors Ryo Umemoto, The University of Tokyo Graduate School of Pharmaceutical Sciences Hongo, Bunkyo-ku Tokyo 113-0033 Japan Noritaka Nishida, The University of Tokyo Graduate School of Pharmaceutical Sciences Hongo, Bunkyo-ku Tokyo 113-0033 Japan Shinji Ogino, The University of Tokyo Graduate School of Pharmaceutical Sciences Hongo, Bunkyo-ku Tokyo 113-0033 Japan
nmrlearner Journal club 0 08-14-2010 04:19 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 12:19 AM.


Map