BioNMR

BioNMR (http://www.bionmr.com/forum/)
-   Journal club (http://www.bionmr.com/forum/journal-club-9/)
-   -   [NMR paper] NMR spectroscopy of hydroxyl protons in aqueous solutions of peptides and proteins. (http://www.bionmr.com/forum/journal-club-9/nmr-spectroscopy-hydroxyl-protons-aqueous-solutions-peptides-proteins-6515/)

nmrlearner 08-21-2010 11:45 PM

NMR spectroscopy of hydroxyl protons in aqueous solutions of peptides and proteins.
 
NMR spectroscopy of hydroxyl protons in aqueous solutions of peptides and proteins.

Related Articles NMR spectroscopy of hydroxyl protons in aqueous solutions of peptides and proteins.

J Biomol NMR. 1992 Sep;2(5):447-65

Authors: Liepinsh E, Otting G, Wüthrich K

Hydroxyl groups of serine and threonine, and to some extent also tyrosine are usually located on or near the surface of proteins. NMR observations of the hydroxyl protons is therefore of interest to support investigations of the protein surface in solution, and knowledge of the hydroxyl NMR lines is indispensable as a reference for studies of protein hydration in solution. In this paper, solvent suppression schemes recently developed for observation of hydration water resonances were used to observe hydroxyl protons of serine, threonine and tyrosine in aqueous solutions of small model peptides and the protein basic pancreatic trypsin inhibitor (BPTI). The chemical shifts of the hydroxyl protons of serine and threonine were found to be between 5.4 and 6.2 ppm, with random-coil shifts at 4 degrees C of 5.92 ppm and 5.88 ppm, respectively, and those of tyrosine between 9.6 and 10.1 ppm, with a random-coil shift of 9.78 ppm. Since these spectral regions are virtually free of other polypeptide 1H NMR signals, cross peaks with the hydroxyl protons are usually well separated even in homonuclear two-dimensional 1H NMR spectra. To illustrate the practical use of hydroxyl proton NMR in polypeptides, the conformations of the side-chain hydroxyl groups in BPTI were characterized by measurements of nuclear Overhauser effects and scalar coupling constants involving the hydroxyl protons. In addition, hydroxyl proton exchange rates were measured as a function of pH, where simple first-order rate processes were observed for both acid- and base-catalysed exchange of all but one of the hydroxyl-bearing residues in BPTI. For the conformations of the individual Ser, Thr and Tyr side chains characterized in the solution structure with the use of hydroxyl proton NMR, both exact coincidence and significant differences relative to the corresponding BPTI crystal structure data were observed.

PMID: 1384851 [PubMed - indexed for MEDLINE]



Source: PubMed


All times are GMT. The time now is 02:56 PM.

Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Search Engine Friendly URLs by vBSEO 3.6.0
Copyright, BioNMR.com, 2003-2013