BioNMR

BioNMR (http://www.bionmr.com/forum/)
-   Journal club (http://www.bionmr.com/forum/journal-club-9/)
-   -   [NMR paper] NMR solution structure of the isolated N-terminal fragment of protein-G B1 domain. Ev (http://www.bionmr.com/forum/journal-club-9/nmr-solution-structure-isolated-n-terminal-fragment-protein-g-b1-domain-ev-6985/)

nmrlearner 08-22-2010 03:33 AM

NMR solution structure of the isolated N-terminal fragment of protein-G B1 domain. Ev
 
NMR solution structure of the isolated N-terminal fragment of protein-G B1 domain. Evidence of trifluoroethanol induced native-like beta-hairpin formation.

Related Articles NMR solution structure of the isolated N-terminal fragment of protein-G B1 domain. Evidence of trifluoroethanol induced native-like beta-hairpin formation.

Biochemistry. 1994 May 17;33(19):6004-14

Authors: Blanco FJ, Jiménez MA, Pineda A, Rico M, Santoro J, Nieto JL

The solution structure of the isolated N-terminal fragment of streptococcal protein-G B1 domain has been investigated in H2O and TFE/H2O solution by CD and NMR to gain insight into the possible role that native beta-hairpin secondary structure elements may have in early protein folding steps. The fragment also has been studied under denaturing conditions (6 M urea), and the resulting NMR chemical shifts were used as a reference for the disordered state. On the basis of CD and NMR data, it is concluded that in aqueous solution the fragment is basically flexible, with two local low populated chain bends involving residues 8-9 and 14-15, respectively, in close agreement with secondary structure predictions, a structure that is different from the final folded state of that segment of the protein. The changes in the CD spectrum, the presence of several medium-range NOEs plus two long-range NOEs, and the sign of the H alpha conformational shifts reveal that the addition of TFE facilitates the formation of a set of transient beta-hairpins involving essentially the same residues that form the native beta-hairpin found in the final three-dimensional structure of the B1 domain. The stabilization of native-like structures by TFE is known to occur for helices, but, to our knowledge, this is the first time the stabilization of a native-like beta-hairpin structure by TFE is reported. Since long-range tertiary interactions are absent in the isolated fragment, our results support the idea that, in addition to helices, beta-hairpins may play an active role in directing the protein folding process.

PMID: 8180228 [PubMed - indexed for MEDLINE]



Source: PubMed


All times are GMT. The time now is 09:31 AM.

Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Search Engine Friendly URLs by vBSEO 3.6.0
Copyright, BioNMR.com, 2003-2013