BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 08-22-2010, 03:50 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,173
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default NMR solution structure of calcium-saturated skeletal muscle troponin C.

NMR solution structure of calcium-saturated skeletal muscle troponin C.

Related Articles NMR solution structure of calcium-saturated skeletal muscle troponin C.

Biochemistry. 1995 Dec 12;34(49):15953-64

Authors: Slupsky CM, Sykes BD

Troponin C (TnC) is an 18 kDa (162-residue) thin-filament calcium-binding protein responsible for triggering muscle contraction upon the release of calcium from the sarcoplasmic reticulum. The structure of TnC with two calcium ions bound has previously been solved by X-ray methods. Shown here is the solution structure of TnC which has been solved using 3D and 4D heteronuclear nuclear magnetic resonance (NMR) spectroscopic techniques. The 1H, 13C, and 15N backbone chemical shifts have already been published [Slupsky, C. M., Reinach, F. C., Smillie, L. B., & Sykes, B. D. (1995) Protein Sci. 4, 1279-1290]. Presented herein are the 1H, 13C, and 15N side-chain chemical shifts which are 80% complete. The structure of calcium-saturated TnC was determined on the basis of 2106 NOE-derived distance restraints, 121 phi dihedral angle restraints, and 76 psi dihedral angle restraints. The appearance of calcium-saturated TnC reveals a dumbbell-shaped molecule with two globular domains connected by a linker. The structures of the N-terminal and C-terminal domains are highly converged [backbone atomic root mean square deviations (rmsd) about the mean atomic coordinate position for residues 10-80 and 98-155 are 0.66 +/- 0.17 and 0.69 +/- 0.18 A, respectively]; however, the orientation of one domain with respect to the other is not well-defined, and thus each domain appears to be structurally independent. Comparison of the calcium-saturated form of TnC determined herein with the half-saturated form determined by X-ray methods reveals two major differences. First, there is a major structural change which occurs in the N-terminal domain resulting in the opening of a hydrophobic pocket presumably to present itself to its target protein troponin I. This structural change appears to involve only helices B and C which move away from helices N/A/D by the alteration of the backbone phi, psi angles of glutamic acid 41 from irregular in the crystal structure (-97 degrees, -7 degrees) to helical in the NMR calcium-saturated structure (-60 degrees, -34 degrees). The other difference between the two structures is the presence of a flexible linker between the two domains in the NMR structure. This flexible linker allows the two domains of TnC to adopt any orientation with respect to one another such that they can interact with a variety of targets.

PMID: 8519752 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Skeletal muscle lipid metabolism studied by advanced magnetic resonance spectroscopy
Skeletal muscle lipid metabolism studied by advanced magnetic resonance spectroscopy Publication year: 2012 Source: Progress in Nuclear Magnetic Resonance Spectroscopy, Available online 23 February 2012</br> Arunima*Pola, Suresh Anand*Sadananthan, Jadegoud*Yaligar, Vijayasarathi*Nagarajan, Weiping*Han, ...</br> More...
nmrlearner Journal club 0 02-26-2012 05:01 AM
Effect of ischemic preconditioning in skeletal muscle measured by functional ... - 7thSpace Interactive (press release)
<img alt="" height="1" width="1" /> Effect of ischemic preconditioning in skeletal muscle measured by functional ... 7thSpace Interactive (press release) Nuclear magnetic resonance (NMR) imaging and spectroscopy have been applied to assess skeletal muscle oxidative metabolism. Therefore, in-vivo NMR may enable the characterization of ischemia-reperfusion injury. The goal of this study was to evaluate ... Protein NMR Spectroscopy: Practical Techniques and ApplicationsspectroscopyNOW.com all 2 news articles &raquo; Effect of ischemic preconditioning in skeletal muscle measured by...
nmrlearner Online News 0 07-26-2011 11:22 PM
[NMR paper] Proton NMR spectroscopy shows lipids accumulate in skeletal muscle in response to burn trauma-induced apoptosis.
Proton NMR spectroscopy shows lipids accumulate in skeletal muscle in response to burn trauma-induced apoptosis. Related Articles Proton NMR spectroscopy shows lipids accumulate in skeletal muscle in response to burn trauma-induced apoptosis. FASEB J. 2005 Sep;19(11):1431-40 Authors: Astrakas LG, Goljer I, Yasuhara S, Padfield KE, Zhang Q, Gopalan S, Mindrinos MN, Dai G, Yu YM, Martyn JA, Tompkins RG, Rahme LG, Tzika AA Burn trauma triggers hypermetabolism and muscle wasting via increased cellular protein degradation and apoptosis. Proton...
nmrlearner Journal club 0 12-01-2010 06:56 PM
[NMR paper] Solution NMR structure and folding dynamics of the N terminus of a rat non-muscle alp
Solution NMR structure and folding dynamics of the N terminus of a rat non-muscle alpha-tropomyosin in an engineered chimeric protein. Related Articles Solution NMR structure and folding dynamics of the N terminus of a rat non-muscle alpha-tropomyosin in an engineered chimeric protein. J Mol Biol. 2001 Sep 28;312(4):833-47 Authors: Greenfield NJ, Huang YJ, Palm T, Swapna GV, Monleon D, Montelione GT, Hitchcock-DeGregori SE Tropomyosin is an alpha-helical coiled-coil protein that aligns head-to-tail along the length of the actin filament and...
nmrlearner Journal club 0 11-19-2010 08:44 PM
[NMR paper] 13C/31P NMR assessment of mitochondrial energy coupling in skeletal muscle of awake f
13C/31P NMR assessment of mitochondrial energy coupling in skeletal muscle of awake fed and fasted rats. Relationship with uncoupling protein 3 expression. Related Articles 13C/31P NMR assessment of mitochondrial energy coupling in skeletal muscle of awake fed and fasted rats. Relationship with uncoupling protein 3 expression. J Biol Chem. 2000 Dec 15;275(50):39279-86 Authors: Jucker BM, Ren J, Dufour S, Cao X, Previs SF, Cadman KS, Shulman GI To examine the relationship between mitochondrial energy coupling in skeletal muscle and change in...
nmrlearner Journal club 0 11-19-2010 08:29 PM
[NMR paper] NMR solution structure of a synthetic troponin C heterodimeric domain.
NMR solution structure of a synthetic troponin C heterodimeric domain. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-acspubs.jpg Related Articles NMR solution structure of a synthetic troponin C heterodimeric domain. Biochemistry. 1996 Jun 11;35(23):7429-38 Authors: Shaw GS, Sykes BD The C-terminal domain from the muscle protein troponin C (TnC) comprises two helix-loop-helix calcium-binding sites (residues 90-162). The assembly of these two sites is governed by calcium binding enabling a synthetic C-terminal...
nmrlearner Journal club 0 08-22-2010 02:27 PM
[NMR paper] Solution secondary structure of calcium-saturated troponin C monomer determined by mu
Solution secondary structure of calcium-saturated troponin C monomer determined by multidimensional heteronuclear NMR spectroscopy. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles Solution secondary structure of calcium-saturated troponin C monomer determined by multidimensional heteronuclear NMR spectroscopy. Protein Sci. 1995...
nmrlearner Journal club 0 08-22-2010 03:41 AM
[NMR paper] NMR-derived three-dimensional solution structure of protein S complexed with calcium.
NMR-derived three-dimensional solution structure of protein S complexed with calcium. Related Articles NMR-derived three-dimensional solution structure of protein S complexed with calcium. Structure. 1994 Feb 15;2(2):107-22 Authors: Bagby S, Harvey TS, Eagle SG, Inouye S, Ikura M BACKGROUND: Protein S is a developmentally-regulated Ca(2+)-binding protein of the soil bacterium Myxococcus xanthus. It functions by forming protective, multilayer spore surface assemblies which may additionally act as a cell-cell adhesive. Protein S is...
nmrlearner Journal club 0 08-22-2010 03:33 AM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 05:50 AM.


Map