BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 12-01-2021, 02:07 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,173
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default NMR Relaxation Dispersion Methods for the Structural and Dynamic Analysis of Quickly Interconverting, Low-Populated Conformational Substates

NMR Relaxation Dispersion Methods for the Structural and Dynamic Analysis of Quickly Interconverting, Low-Populated Conformational Substates

Most biomolecular processes involve proteins shuttling among different conformational states, particularly from highly populated ground states to the lowly populated excited states that determine the interconversion rates and biological function, and which are invisible to most structural biology techniques. These structural transitions are rare and relatively fast: happen in the millisecond-microsecond timescale (ms-?s). NMR spectroscopy can access these timescales via relaxation dispersion...

More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] SRLS Analysis of 15N-1H NMR Relaxation from the Protein S100A1: Dynamic Structure, Calcium Binding, and Related Changes in Conformational Entropy.
SRLS Analysis of 15N-1H NMR Relaxation from the Protein S100A1: Dynamic Structure, Calcium Binding, and Related Changes in Conformational Entropy. Related Articles SRLS Analysis of 15N-1H NMR Relaxation from the Protein S100A1: Dynamic Structure, Calcium Binding, and Related Changes in Conformational Entropy. J Phys Chem B. 2021 Jan 15;: Authors: Mendelman N, Meirovitch E Abstract We report on amide (N-H) NMR relaxation from the protein S100A1 analyzed with the slowly relaxing local structure (SRLS) approach. S100A1 comprises two...
nmrlearner Journal club 0 01-16-2021 04:55 PM
[NMR paper] High Pressure NMR Methods for Characterizing Functional Substates of Proteins.
High Pressure NMR Methods for Characterizing Functional Substates of Proteins. Related Articles High Pressure NMR Methods for Characterizing Functional Substates of Proteins. Subcell Biochem. 2015;72:179-197 Authors: Kalbitzer HR Abstract Proteins usually exist in multiple conformational states in solution. High pressure NMR spectroscopy is a well-suited method to identify these states. In addition, these states can be characterized by their thermodynamic parameters, the free enthalpies at ambient pressure, the partial molar...
nmrlearner Journal club 0 07-16-2015 11:21 AM
[NMR paper] Probing the Residual Structure of the Low Populated Denatured State of ADA2h under Folding Conditions by Relaxation Dispersion NMR Spectroscopy.
Probing the Residual Structure of the Low Populated Denatured State of ADA2h under Folding Conditions by Relaxation Dispersion NMR Spectroscopy. Related Articles Probing the Residual Structure of the Low Populated Denatured State of ADA2h under Folding Conditions by Relaxation Dispersion NMR Spectroscopy. Biochemistry. 2015 Jun 26; Authors: Pustovalova Y, Kukic P, Vendruscolo M, Korzhnev DM Abstract The structural characterization of low-populated states of proteins with accuracy comparable to that achievable for native states is...
nmrlearner Journal club 0 06-27-2015 01:13 PM
Heteronuclear Adiabatic Relaxation Dispersion (HARD) for Quantitative Analysis of Conformational Dynamics in Proteins
Heteronuclear Adiabatic Relaxation Dispersion (HARD) for Quantitative Analysis of Conformational Dynamics in Proteins Publication year: 2012 Source:Journal of Magnetic Resonance</br> Nathaniel J. Traaseth, Fa-An Chao, Larry R. Masterson, Silvia Mangia, Michael Garwood, Shalom Michaeli, Burckhard Seelig, Gianluigi Veglia</br> NMR relaxation methods probe biomolecular motions over a wide range of timescales. In particular, the rotating frame spin-lock R1? and Carr-Purcell-Meiboom-Gill (CPMG) R2 experiments are commonly used to characterize ?sec-msec dynamics, which...
nmrlearner Journal club 0 04-08-2012 08:53 AM
Nonnative Interactions in the FF Domain Folding Pathway from an Atomic Resolution Structure of a Sparsely Populated Intermediate: An NMR Relaxation Dispersion Study
Nonnative Interactions in the FF Domain Folding Pathway from an Atomic Resolution Structure of a Sparsely Populated Intermediate: An NMR Relaxation Dispersion Study Dmitry M. Korzhnev, Robert M. Vernon, Tomasz L. Religa, Alexandar L. Hansen, David Baker, Alan R. Fersht and Lewis E. Kay http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja203686t/aop/images/medium/ja-2011-03686t_0002.gif Journal of the American Chemical Society DOI: 10.1021/ja203686t http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA...
nmrlearner Journal club 0 06-29-2011 04:45 AM
Non-Native Interactions in the FF Domain Folding Pathway From an Atomic Resolution Structure of a Sparsely Populated Intermediate: An NMR Relaxation Dispersion Study.
Non-Native Interactions in the FF Domain Folding Pathway From an Atomic Resolution Structure of a Sparsely Populated Intermediate: An NMR Relaxation Dispersion Study. Non-Native Interactions in the FF Domain Folding Pathway From an Atomic Resolution Structure of a Sparsely Populated Intermediate: An NMR Relaxation Dispersion Study. J Am Chem Soc. 2011 Jun 6; Authors: Korzhnev DM, Vernon RM, Religa TL, Hansen AL, Baker D, Fersht AR, Kay LE Several all-helical single-domain proteins have been shown to fold rapidly (us timescale) to a compact...
nmrlearner Journal club 0 06-07-2011 11:05 AM
Conformational dynamics of recoverin's Ca(2+) -myristoyl switch probed by (15) N NMR relaxation dispersion and chemical shift analysis.
Conformational dynamics of recoverin's Ca(2+) -myristoyl switch probed by (15) N NMR relaxation dispersion and chemical shift analysis. Conformational dynamics of recoverin's Ca(2+) -myristoyl switch probed by (15) N NMR relaxation dispersion and chemical shift analysis. Proteins. 2011 Feb 16; Authors: Xu X, Ishima R, Ames JB Recoverin, a member of the neuronal calcium sensor (NCS) branch of the calmodulin superfamily, serves as a calcium sensor in retinal rod cells. Ca(2+) -induced conformational changes in recoverin promote extrusion of its...
nmrlearner Journal club 0 04-06-2011 10:54 AM
[NMR paper] Low-populated folding intermediates of Fyn SH3 characterized by relaxation dispersion
Low-populated folding intermediates of Fyn SH3 characterized by relaxation dispersion NMR. Related Articles Low-populated folding intermediates of Fyn SH3 characterized by relaxation dispersion NMR. Nature. 2004 Jul 29;430(6999):586-90 Authors: Korzhnev DM, Salvatella X, Vendruscolo M, Di Nardo AA, Davidson AR, Dobson CM, Kay LE Many biochemical processes proceed through the formation of functionally significant intermediates. Although the identification and characterization of such species can provide vital clues about the mechanisms of the...
nmrlearner Journal club 0 11-24-2010 09:51 PM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 03:36 AM.


Map