BioNMR

BioNMR (http://www.bionmr.com/forum/)
-   Journal club (http://www.bionmr.com/forum/journal-club-9/)
-   -   [NMR paper] NMR and molecular modeling studies on two glycopeptides from the carbohydrate-protein (http://www.bionmr.com/forum/journal-club-9/nmr-molecular-modeling-studies-two-glycopeptides-carbohydrate-protein-5458/)

nmrlearner 08-21-2010 04:03 PM

NMR and molecular modeling studies on two glycopeptides from the carbohydrate-protein
 
NMR and molecular modeling studies on two glycopeptides from the carbohydrate-protein linkage region of connective tissue proteoglycans.

http://www.ncbi.nlm.nih.gov/corehtml...final_free.gif Related Articles NMR and molecular modeling studies on two glycopeptides from the carbohydrate-protein linkage region of connective tissue proteoglycans.

Glycobiology. 1999 Jul;9(7):669-77

Authors: Agrawal PK, Jacquinet JC, Krishna NR

Complete 1H and 13C NMR assignments are reported for two glycopeptides representing the carbohydrate-protein linkage region of connective tissue proteoglycans. These glycopeptides are the octasaccharide hexapeptide, Ser(GlcpAbeta(1-->3) Galpbeta(1-->3)Galpbeta(1-->4)Xylpbeta)-Gly-Ser-Gly-Se r (GlcpAbeta(1-->3)Galpbeta(1-->3)Galpbeta(1-->4)Xylp beta)-Gly (1), and the tetrasaccharide dipeptide, Ser(GlcpAbeta(1-->3)Galpbeta(1-->3)Galpbeta(1-->4)X ylpbeta)-Gly (2). The vicinal coupling constant data show that the monosaccharide residues adopt4 C 1 chair conformations. Distance geometry/simulated annealing calculations using 2D NOESY derived distance constraints yielded a single family of structures for the tetrasaccharide moiety, with well defined interglycosidic linkage conformations. The straight phi torsion angles of the glycosidic C1'-O1 bonds showed a strict preference for the -sc range whereas the psi torsion angles (O1-Cn) exhibited dependence upon the interglycosidic linkage position (-ac for beta(1-->3) linkage, +ac for beta(1-->4) linkage). The predominant conformation about the glycopeptide bond is straight phi = -sc and psi = +ac. The presence of strong daN (i, i+1) NOE contacts, and the general absence of dNN (i, i+1) contacts (except for a weak Ser-5/Gly-6 dNN contact) and the dbN (i, i+1) contacts (except for Ser-1/Gly-2) in the ROESY spectrum, suggest that the backbone for 1 is predominantly in an extended conformation. A comparison of the ROESY data for 1 with those obtained from the unglycosylated hexapeptide (3) of the same sequence suggests that glycosylation has only a marginal influence on the backbone conformation of the hexapeptide.

PMID: 10362836 [PubMed - indexed for MEDLINE]



Source: PubMed


All times are GMT. The time now is 07:52 PM.

Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Search Engine Friendly URLs by vBSEO 3.6.0
Copyright, BioNMR.com, 2003-2013