BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 06-07-2013, 10:04 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 18,080
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default NMR investigations of structural and dynamics features of natively unstructured drug peptide - salmon calcitonin: implication to rational design of potent sCT analogs.

NMR investigations of structural and dynamics features of natively unstructured drug peptide - salmon calcitonin: implication to rational design of potent sCT analogs.

Related Articles NMR investigations of structural and dynamics features of natively unstructured drug peptide - salmon calcitonin: implication to rational design of potent sCT analogs.

J Pept Sci. 2013 Jan;19(1):33-45

Authors: Rawat A, Kumar D

Abstract
Backbone dynamics and conformational properties of drug peptide salmon calcitonin have been studied in aqueous solution using nuclear magnetic resonance (NMR). Although salmon calcitonin (sCT) is largely unfolded in solution (as has been reported in several circular dichroism studies), the secondary H(?) chemical shifts and three bond H(N) -H(?) coupling constants indicated that most of the residues of the peptide are populating the ?-helical region of the Ramachandran (?, ?) map. Further, the peptide in solution has been found to exhibit multiple conformational states exchanging slowly on the NMR timescale (10(2) -10(3) s(-1) ), inferred by the multiple chemical shift assignments in the region Leu4-Leu12 and around Pro23 (for residues Gln20-Tyr22 and Arg24). Possibly, these slowly exchanging multiple conformational states might inhibit symmetric self-association of the peptide and, in part, may account for its reduced aggregation propensity compared with human calcitonin (which lacks this property). The (15) N NMR-relaxation data revealed (i) the presence of slow (microsecond-to-millisecond) timescale dynamics in the N-terminal region (Cys1-Ser5) and core residues His17 and Asn26 and (ii) the presence of high frequency (nanosecond-to-picosecond) motions in the C-terminal arm. Put together, the various results suggested that (i) the flexible C-terminal of sCT (from Thr25-Thr31) is involved in identification of specific target receptors, (ii) whereas the N-terminal of sCT (from Cys1-Gln20) in solution - exhibiting significant amount of conformational plasticity and strong bias towards biologically active ?-helical structure - facilitates favorable conformational adaptations while interacting with the intermembrane domains of these target receptors. Thus, we believe that the structural and dynamics features of sCT presented here will be useful guiding attributes for the rational design of biologically active sCT analogs.


PMID: 23208874 [PubMed - indexed for MEDLINE]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Structure-Based Drug Design
Structure-Based Drug Design http://www.spectroscopynow.com/common/images/thumbnails/no_img.gifThe 13th Structure-Based Drug Discovery conference will feature the development of in silico technology as well as experimental approaches useful for accurately predicting and modeling the structures of proteins in structure-based drug design efforts. More...
nmrlearner Conferences 0 05-22-2013 04:43 PM
Scientists move toward rational design of artificial proteins - R & D Magazine
Scientists move toward rational design of artificial proteins - R & D Magazine <img alt="" height="1" width="1" /> Scientists move toward rational design of artificial proteins R & D Magazine Less vulnerable to chemical or metabolic breakdown than proteins, peptoids are promising for diagnostics, pharmaceuticals, and as a platform to build bioinspired nanomaterials, as scientists can build and manipulate peptoids with great precision. But ... Read here
nmrlearner Online News 0 08-23-2012 03:46 AM
Systematic Study of Protein Detection Mechanism of Self-Assembling 19F NMR/MRI Nanoprobes toward Rational Design and Improved Sensitivity
Systematic Study of Protein Detection Mechanism of Self-Assembling 19F NMR/MRI Nanoprobes toward Rational Design and Improved Sensitivity Yousuke Takaoka, Keishi Kiminami, Keigo Mizusawa, Kazuya Matsuo, Michiko Narazaki, Tetsuya Matsuda and Itaru Hamachi http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja203996c/aop/images/medium/ja-2011-03996c_0004.gif Journal of the American Chemical Society DOI: 10.1021/ja203996c http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/fqTSjFalrGg
nmrlearner Journal club 0 07-12-2011 08:16 AM
Discovery of a potent and efficacious peptide derivative for ?/? opioid agonist/neurokinin 1 antagonist activity with a 2',6'-dimethyl-L-tyrosine: in vitro, in vivo, and NMR-based structural studies.
Discovery of a potent and efficacious peptide derivative for ?/? opioid agonist/neurokinin 1 antagonist activity with a 2',6'-dimethyl-L-tyrosine: in vitro, in vivo, and NMR-based structural studies. Discovery of a potent and efficacious peptide derivative for ?/? opioid agonist/neurokinin 1 antagonist activity with a 2',6'-dimethyl-L-tyrosine: in vitro, in vivo, and NMR-based structural studies. J Med Chem. 2011 Apr 14;54(7):2029-38 Authors: Yamamoto T, Nair P, Largent-Milnes TM, Jacobsen NE, Davis P, Ma SW, Yamamura HI, Vanderah TW, Porreca F, Lai J, Hruby...
nmrlearner Journal club 0 06-07-2011 11:05 AM
Structural Features of Cytochromes P450 and Ligands that Affect Drug Metabolism as Re
Structural Features of Cytochromes P450 and Ligands that Affect Drug Metabolism as Revealed by X-ray Crystallography and NMR. Structural Features of Cytochromes P450 and Ligands that Affect Drug Metabolism as Revealed by X-ray Crystallography and NMR. Future Med Chem. 2010 Sep 1;2(9):1451-1468 Authors: Gay SC, Roberts AG, Halpert JR Cytochromes P450 (P450s) play a major role in the clearance of drugs, toxins, and environmental pollutants. Additionally, metabolism by P450s can result in toxic or carcinogenic products. The metabolism of...
nmrlearner Journal club 0 11-26-2010 05:32 PM
[NMR paper] Structural investigations of a human calcitonin-derived carrier peptide in a membrane
Structural investigations of a human calcitonin-derived carrier peptide in a membrane environment by solid-state NMR. Related Articles Structural investigations of a human calcitonin-derived carrier peptide in a membrane environment by solid-state NMR. Biochemistry. 2004 Oct 5;43(39):12459-68 Authors: Wagner K, Beck-Sickinger AG, Huster D Previous studies have shown that human calcitonin (hCT) and its C-terminal fragment hCT(9-32) translocate in nasal epithelium. Moreover, hCT(9-32) was used as a carrier to internalize efficiently the green...
nmrlearner Journal club 0 11-24-2010 10:01 PM
[NMR paper] The design of a potent inhibitor of the hepatitis C virus NS3 protease: BILN 2061--fr
The design of a potent inhibitor of the hepatitis C virus NS3 protease: BILN 2061--from the NMR tube to the clinic. Related Articles The design of a potent inhibitor of the hepatitis C virus NS3 protease: BILN 2061--from the NMR tube to the clinic. Biopolymers. 2004;76(4):309-23 Authors: Tsantrizos YS The virally encoded serine protease NS3/NS4A is essential to the life cycle of the hepatitis C virus (HCV), an important human pathogen causing chronic hepatitis, cirrhosis of the liver, and hepatocellular carcinoma. Until very recently, the...
nmrlearner Journal club 0 11-24-2010 09:25 PM
[NMR paper] Structural characterization by NMR of the natively unfolded extracellular domain of b
Structural characterization by NMR of the natively unfolded extracellular domain of beta-dystroglycan: toward the identification of the binding epitope for alpha-dystroglycan. Related Articles Structural characterization by NMR of the natively unfolded extracellular domain of beta-dystroglycan: toward the identification of the binding epitope for alpha-dystroglycan. Biochemistry. 2003 Nov 25;42(46):13717-24 Authors: Bozzi M, Bianchi M, Sciandra F, Paci M, Giardina B, Brancaccio A, Cicero DO Dystroglycan (DG) is an adhesion molecule playing a...
nmrlearner Journal club 0 11-24-2010 09:16 PM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2017, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 03:17 AM.


Map