BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 09-02-2021, 02:00 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,135
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default NMR hawk-eyed view of AlphaFold2 structures

NMR hawk-eyed view of AlphaFold2 structures

Abstract

The prediction of the three-dimensional structure of proteins from the amino acid sequence made a stunning breakthrough reaching atomic accuracy. Using the neural network-based method AlphaFold2 three-dimensional structures of almost the entire human proteome have been predicted and made available (https://www.alphafold.ebi.ac.uk). To gain insight into how well AlphaFold2 structures represent the conformation of proteins in solution, I here compare the AlphaFold2 structures of selected small proteins with their 3D structures that were determined by NMR spectroscopy. Proteins were selected for which the 3D solution structures were determined on the basis of a very large number of distance restraints and residual dipolar couplings and are thus some of the best-resolved solution structures of proteins to date. The quality of the backbone conformation of the AlphaFold2 structures is assessed by fitting a large set of experimental residual dipolar couplings (RDCs). The analysis shows that experimental RDCs fit extremely well to the AlphaFold2 structures predicted for GB3, DinI and ubiquitin. In the case of GB3, the accuracy of the AlphaFold2 structure even surpasses that of a 1.1 å crystal structure. Fitting of experimental RDCs furthermore allows identification of AlphaFold2 structures that are best representative of the protein's conformation in solution as seen for the EF hands of the N-terminal domain of Ca2+-ligated calmodulin. Taken together the analysis shows that structures predicted by AlphaFold2 can be highly representative of the solution conformation of proteins. The combination of AlphaFold2 structures with RDCs promises to be a powerful approach to study structural changes in proteins.

This article is protected by copyright. All rights reserved.



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
DeepMind's AlphaFold2 AI Solves 50-Year-Old Biology Challenge - InfoQ.com
DeepMind's AlphaFold2 AI Solves 50-Year-Old Biology Challenge InfoQ.com DeepMind's AlphaFold2 AI Solves 50-Year-Old Biology Challenge - InfoQ.com More...
nmrlearner Online News 0 01-13-2021 08:38 AM
DeepMind's AlphaFold2 AI Solves 50-Year-Old Biology Challenge - InfoQ.com
DeepMind's AlphaFold2 AI Solves 50-Year-Old Biology Challenge InfoQ.com DeepMind's AlphaFold2 AI Solves 50-Year-Old Biology Challenge - InfoQ.com More...
nmrlearner Online News 0 01-06-2021 07:11 AM
ProteinNMR Structures Refined with Rosetta Have HigherAccuracy Relative to Corresponding X-ray Crystal Structures
ProteinNMR Structures Refined with Rosetta Have HigherAccuracy Relative to Corresponding X-ray Crystal Structures Binchen Mao, Roberto Tejero, David Baker and Gaetano T. Montelione http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja409845w/aop/images/medium/ja-2013-09845w_0009.gif Journal of the American Chemical Society DOI: 10.1021/ja409845w http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/7Lshnyi2_Vs
nmrlearner Journal club 0 01-24-2014 10:47 AM
[NMR paper] Protein NMR Structures Refined with Rosetta Have Higher Accuracy Relative to Corresponding X-ray Crystal Structures.
Protein NMR Structures Refined with Rosetta Have Higher Accuracy Relative to Corresponding X-ray Crystal Structures. Protein NMR Structures Refined with Rosetta Have Higher Accuracy Relative to Corresponding X-ray Crystal Structures. J Am Chem Soc. 2014 Jan 6; Authors: Mao B, Tejero R, Baker D, Montelione GT Abstract We have found that refinement of protein NMR structures using Rosetta with experimental NMR restraints yields more accurate protein NMR structures than those that have been deposited in the PDB using standard refinement...
nmrlearner Journal club 0 01-08-2014 11:23 AM
New Technology Provides a Deep View Into Protein Structures - Science Daily (press release)
New Technology Provides a Deep View Into Protein Structures - Science Daily (press release) <img alt="" height="1" width="1" /> New Technology Provides a Deep View Into Protein Structures Science Daily (press release) The stability of a thermodynamic system, such as a protein, can be analyzed by subjecting it to variations in pressure and temperature. Using high resolution NMR methods and a newly developed pressure cell Nisius and Grzesiek have precisely analyzed ... Read here
nmrlearner Online News 0 07-11-2012 06:54 PM
[NMR paper] Comparison of X-ray and NMR structures: is there a systematic difference in residue contacts between X-ray- and NMR-resolved protein structures?
Comparison of X-ray and NMR structures: is there a systematic difference in residue contacts between X-ray- and NMR-resolved protein structures? Related Articles Comparison of X-ray and NMR structures: is there a systematic difference in residue contacts between X-ray- and NMR-resolved protein structures? Proteins. 2005 Jul 1;60(1):139-47 Authors: Garbuzynskiy SO, Melnik BS, Lobanov MY, Finkelstein AV, Galzitskaya OV We have compared structures of 78 proteins determined by both NMR and X-ray methods. It is shown that X-ray and NMR structures...
nmrlearner Journal club 0 12-01-2010 06:56 PM
CoNSEnsX: an ensemble view of protein structures and NMR-derived experimental data.
CoNSEnsX: an ensemble view of protein structures and NMR-derived experimental data. Related Articles CoNSEnsX: an ensemble view of protein structures and NMR-derived experimental data. BMC Struct Biol. 2010 Oct 29;10(1):39 Authors: Angyan AF, Szappanos B, Perczel A, Gaspari Z ABSTRACT: BACKGROUND: In conjunction with the recognition of the functional role of internal dynamics of proteins at various timescales, there is an emerging use of dynamic structural ensembles instead of individual conformers. These ensembles are usually substantially...
nmrlearner Journal club 0 11-03-2010 10:44 AM
CoNSEnsX: an ensemble view of protein structures and NMR-derived experimental data -
CoNSEnsX: an ensemble view of protein structures and NMR-derived experimental data - 7thSpace Interactive (press release) <img alt="" height="1" width="1" /> CoNSEnsX: an ensemble view of protein structures and NMR-derived experimental data 7thSpace Interactive (press release) These ensembles are usually substantially more diverse than conventional NMR ensembles and eliminate the expectation that a single conformer should fulfill ... Read here
nmrlearner Online News 0 10-29-2010 09:32 PM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 08:09 PM.


Map