BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 05-13-2014, 03:11 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,187
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default NMR of glycans: Shedding new light on old problems.

NMR of glycans: Shedding new light on old problems.

NMR of glycans: Shedding new light on old problems.

Prog Nucl Magn Reson Spectrosc. 2014 May;79C:48-68

Authors: Battistel MD, Azurmendi HF, Yu B, Freedberg DI

Abstract
The diversity in molecular arrangements and dynamics displayed by glycans renders traditional NMR strategies, employed for proteins and nucleic acids, insufficient. Because of the unique properties of glycans, structural studies often require the adoption of a different repertoire of tailor-made experiments and protocols. We present an account of recent developments in NMR techniques that will deepen our understanding of structure-function relations in glycans. We open with a survey and comparison of methods utilized to determine the structure of proteins, nucleic acids and carbohydrates. Next, we discuss the structural information obtained from traditional NMR techniques like chemical shifts, NOEs/ROEs, and coupling-constants, along with the limitations imposed by the unique intrinsic characteristics of glycan structure on these approaches: flexibility, range of conformers, signal overlap, and non-first-order scalar (strong) coupling. Novel experiments taking advantage of isotopic labeling are presented as an option for overcoming spectral overlap and raising sensitivity. Computational tools used to explore conformational averaging in conjunction with NMR parameters are described. In addition, recent developments in hydroxyl detection and hydrogen bond detection in protonated solvents, in contrast to traditional sample preparations in D2O for carbohydrates, further increase the tools available for both structure information and chemical shift assignments. We also include previously unpublished data in this context. Accurate determination of couplings in carbohydrates has been historically challenging due to the common presence of strong-couplings. We present new strategies proposed for dealing with their influence on NMR signals. We close with a discussion of residual dipolar couplings (RDCs) and the advantages of using (13)C isotope labeling that allows gathering one-bond (13)C-(13)C couplings with a recently improved constant-time COSY technique, in addition to the commonly measured (1)H-(13)C RDCs.


PMID: 24815364 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
NMR of Glycans: Shedding New Light on Old Problems
NMR of Glycans: Shedding New Light on Old Problems Publication date: Available online 14 February 2014 Source:Progress in Nuclear Magnetic Resonance Spectroscopy</br> Author(s): Marcos D. Battistel , Hugo F. Azurmendi , Bingwu Yu , Darón I. Freedberg</br> The diversity in molecular arrangements and dynamics displayed by glycans renders traditional NMR strategies, employed for proteins and nucleic acids, insufficient. Because of the unique properties of glycans, structural studies often require the adoption of a different repertoire of tailor-made experiments...
nmrlearner Journal club 0 02-15-2014 07:22 AM
[NMR paper] Direct Evidence for Hydrogen Bonding Between Hydroxyl Groups in Glycans: A Combined NMR and Molecular Dynamics Study.
Direct Evidence for Hydrogen Bonding Between Hydroxyl Groups in Glycans: A Combined NMR and Molecular Dynamics Study. Related Articles Direct Evidence for Hydrogen Bonding Between Hydroxyl Groups in Glycans: A Combined NMR and Molecular Dynamics Study. J Phys Chem B. 2013 Mar 26; Authors: Battistel MD, Pendrill R, Widmalm G, Freedberg DI Abstract With this report we introduce the abundant hydroxyl groups of glycans as NMR handles and structural probes that expand the repertoire of tools for structure-function studies on glycans in...
nmrlearner Journal club 0 03-28-2013 04:03 PM
Pores for thought: Just shine a light
Pores for thought: Just shine a light http://www.spectroscopynow.com/common/images/thumbnails/13ccd55f10c.jpgNuclear magnetic resonance spectroscopy and mass spectrometry, among other techniques have been used in work on polymer pores. While, irradiation with light is a wel-established approach to the initiation of polymerization as well as cross-linking (or curing of polymers) during plastics production, researchers in the USA have now demonstrated that light can be used to retroactively increase the size of the pores within a polymer network. Read the rest at Spectroscopynow.com
nmrlearner General 0 02-15-2013 04:27 AM
Molecular Recognitionof Complex-Type Biantennary N-Glycans by ProteinReceptors: a Three-DimensionalView on Epitope Selection by NMR
Molecular Recognitionof Complex-Type Biantennary N-Glycans by ProteinReceptors: a Three-DimensionalView on Epitope Selection by NMR Ana Arda?, Pilar Blasco, Daniel Varo?n Silva, Volker Schubert, Sabine Andre?, Marta Bruix, F. Javier Can?ada, Hans-Joachim Gabius, Carlo Unverzagt and Jesu?s Jime?nez-Barbero http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja3104928/aop/images/medium/ja-2012-104928_0010.gif Journal of the American Chemical Society DOI: 10.1021/ja3104928 http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA...
nmrlearner Journal club 0 02-06-2013 10:16 AM
[NMR paper] Molecular recognition of complex-type biantennary N-glycans by protein receptors: a 3D view on epitope selection by NMR.
Molecular recognition of complex-type biantennary N-glycans by protein receptors: a 3D view on epitope selection by NMR. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-pubmed-acspubs.jpg Related Articles Molecular recognition of complex-type biantennary N-glycans by protein receptors: a 3D view on epitope selection by NMR. J Am Chem Soc. 2013 Jan 29; Authors: Arda A, Blasco P, Varon Silva D, Schubert V, André S, Bruix M, Cañada FJ, Gabius HJ, Unverzagt C, Jimenez-Barbero J Abstract The current surge in defining...
nmrlearner Journal club 0 02-03-2013 10:19 AM
NMR analysis demonstrates immunoglobulin G N-glycans are accessible and dynamic.
NMR analysis demonstrates immunoglobulin G N-glycans are accessible and dynamic. NMR analysis demonstrates immunoglobulin G N-glycans are accessible and dynamic. Nat Chem Biol. 2011 Jan 23; Authors: Barb AW, Prestegard JH The N-glycan at Asn297 of the immunoglobulin G Fc fragment modulates cellular responses of the adaptive immune system. However, the underlying mechanism remains undefined, as existing structural data suggest the glycan does not directly engage cell surface receptors. Here we characterize the dynamics of the glycan termini...
nmrlearner Journal club 0 01-25-2011 02:13 PM
[NMR paper] Detection of conserved N-linked glycans and phase-variable lipooligosaccharides and c
Detection of conserved N-linked glycans and phase-variable lipooligosaccharides and capsules from campylobacter cells by mass spectrometry and high resolution magic angle spinning NMR spectroscopy. Related Articles Detection of conserved N-linked glycans and phase-variable lipooligosaccharides and capsules from campylobacter cells by mass spectrometry and high resolution magic angle spinning NMR spectroscopy. J Biol Chem. 2003 Jul 4;278(27):24509-20 Authors: Szymanski CM, Michael FS, Jarrell HC, Li J, Gilbert M, Larocque S, Vinogradov E, Brisson JR ...
nmrlearner Journal club 0 11-24-2010 09:01 PM
[NMR paper] The solution NMR structure of glucosylated N-glycans involved in the early stages of
The solution NMR structure of glucosylated N-glycans involved in the early stages of glycoprotein biosynthesis and folding. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles The solution NMR structure of glucosylated N-glycans involved in the early stages of glycoprotein biosynthesis and folding. EMBO J. 1997 Jul 16;16(14):4302-10 Authors: Petrescu AJ, Butters TD, Reinkensmeier G, Petrescu S, Platt FM, Dwek RA, Wormald MR Glucosylated oligomannose N-linked...
nmrlearner Journal club 0 08-22-2010 05:08 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 09:43 PM.


Map