BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 08-21-2010, 04:03 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,135
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Observation of a new nonfluorescent malondialdehyde-acetaldehyde-protein adduct by 13

Observation of a new nonfluorescent malondialdehyde-acetaldehyde-protein adduct by 13C NMR spectroscopy.

Related Articles Observation of a new nonfluorescent malondialdehyde-acetaldehyde-protein adduct by 13C NMR spectroscopy.

Chem Res Toxicol. 1999 Jan;12(1):100-5

Authors: Kearley ML, Patel A, Chien J, Tuma DJ

It has been shown that malondialdehyde (MDA) and acetaldehyde react with proteins via the epsilon-amino group of a lysine residue to yield hybrid MDA-acetaldehyde (MAA)-protein adducts. The structure of one MAA adduct has been confirmed to be 4-methyl-1, 4-dihydropyridine-3,5-dicarbaldehyde (3). In this study, 13C NMR spectroscopy was used to identify the structure of a second MAA adduct as 2-formyl-3-(alkylamino)butanal (4). Isotopically labeled [1-13C]acetaldehyde was reacted with MDA and the protein, bovine serum albumin, under a variety of conditions, and the reactions were monitored at various time intervals by 13C NMR. In each experiment, new signals grew in at 50 and 22 ppm. By comparison to model compounds, the signals at 50 ppm correspond to a 2-formyl-3-(alkylamino)butanal adduct and the signals at 22 ppm correspond to the known 1,4-dihydropyridine-3,5-dicarbaldehyde adduct. Similar results were found when the BSA was replaced with polylysine. Overall, it appears that MAA-protein adducts are composed of two major products, 3 and 4.

PMID: 9894024 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Direct NMR observation of a substrate protein bound to the chaperonin GroEL.
Direct NMR observation of a substrate protein bound to the chaperonin GroEL. Related Articles Direct NMR observation of a substrate protein bound to the chaperonin GroEL. Proc Natl Acad Sci U S A. 2005 Sep 6;102(36):12748-53 Authors: Horst R, Bertelsen EB, Fiaux J, Wider G, Horwich AL, Wüthrich K The reaction cycle and the major structural states of the molecular chaperone GroEL and its cochaperone, GroES, are well characterized. In contrast, very little is known about the nonnative states of the substrate polypeptide acted on by the...
nmrlearner Journal club 0 12-01-2010 06:56 PM
[NMR paper] Observation of slow dynamic exchange processes in Ras protein crystals by 31P solid s
Observation of slow dynamic exchange processes in Ras protein crystals by 31P solid state NMR spectroscopy. Related Articles Observation of slow dynamic exchange processes in Ras protein crystals by 31P solid state NMR spectroscopy. J Mol Biol. 2002 Nov 8;323(5):899-907 Authors: Stumber M, Geyer M, Graf R, Kalbitzer HR, Scheffzek K, Haeberlen U The folding, structure and biological function of many proteins are inherently dynamic properties of the protein molecule. Often, the respective molecular processes are preserved upon protein...
nmrlearner Journal club 0 11-24-2010 08:58 PM
[NMR paper] Novel mechanism of surface catalysis of protein adduct formation. NMR studies of the
Novel mechanism of surface catalysis of protein adduct formation. NMR studies of the acetylation of ubiquitin. Related Articles Novel mechanism of surface catalysis of protein adduct formation. NMR studies of the acetylation of ubiquitin. J Biol Chem. 2000 Oct 13;275(41):31908-13 Authors: Macdonald JM, Haas AL, London RE Reactivity of surface lysyl residues of proteins with a broad range of chemical agents has been proposed to be dependent on the catalytic microenvironment of the residue. We have investigated the acetylation of wild type...
nmrlearner Journal club 0 11-19-2010 08:29 PM
[NMR paper] NMR observation of selected segments in a larger protein: central-segment isotope lab
NMR observation of selected segments in a larger protein: central-segment isotope labeling through intein-mediated ligation. Related Articles NMR observation of selected segments in a larger protein: central-segment isotope labeling through intein-mediated ligation. Biochemistry. 1999 Dec 7;38(49):16040-4 Authors: Otomo T, Ito N, Kyogoku Y, Yamazaki T Peptide segments in a protein, which can include an active site of interest or be a series of parts constituting the entire structure, are now selectively observed by nuclear magnetic resonance...
nmrlearner Journal club 0 11-18-2010 08:31 PM
[NMR paper] Observation of reorientationally hindered water in biological tissue using triple qua
Observation of reorientationally hindered water in biological tissue using triple quantum filtered 17O-NMR. Related Articles Observation of reorientationally hindered water in biological tissue using triple quantum filtered 17O-NMR. Biochim Biophys Acta. 1995 Jun 9;1244(2-3):253-8 Authors: Flesche CW, Gruwel ML, Deussen A, Schrader J Water dynamics in aqueous biopolymer solutions often display a two-phase character, resembling water-water and water-protein interactions. Rotationally hindered water molecules in crowded protein environments...
nmrlearner Journal club 0 08-22-2010 03:41 AM
[NMR paper] Characterization by NMR of the heme-myoglobin adduct formed during the reductive meta
Characterization by NMR of the heme-myoglobin adduct formed during the reductive metabolism of BrCCl3. Covalent bonding of the proximal histidine to the ring I vinyl group. Related Articles Characterization by NMR of the heme-myoglobin adduct formed during the reductive metabolism of BrCCl3. Covalent bonding of the proximal histidine to the ring I vinyl group. J Biol Chem. 1991 Feb 15;266(5):3208-14 Authors: Osawa Y, Highet RJ, Bax A, Pohl LR The reductive debromination of BrCCl3 by ferrous deoxymyoglobin leads to the covalent bonding of the...
nmrlearner Journal club 0 08-21-2010 11:16 PM
[NMR paper] Editing of chemical exchange-relayed NOEs in NMR experiments for the observation of p
Editing of chemical exchange-relayed NOEs in NMR experiments for the observation of protein-water interactions. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Editing of chemical exchange-relayed NOEs in NMR experiments for the observation of protein-water interactions. J Magn Reson. 1999 Feb;136(2):214-8 Authors: Melacini G, Kaptein R, Boelens R An experimental approach for the editing of exchange-relayed NOEs in water-selective NOE experiments is presented. The...
nmrlearner Journal club 0 08-21-2010 04:03 PM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 07:37 PM.


Map