BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rating: Thread Rating: 1 votes, 5.00 average. Display Modes
  #1  
Unread 10-27-2010, 06:56 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,185
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default NMR and bioinformatics discovery of exosites that tune metalloelastase specificity fo

NMR and bioinformatics discovery of exosites that tune metalloelastase specificity for solubilized elastin and collagen triple helices.

Related Articles NMR and bioinformatics discovery of exosites that tune metalloelastase specificity for solubilized elastin and collagen triple helices.

J Biol Chem. 2010 Oct 1;285(40):30918-30

Authors: Palmier MO, Fulcher YG, Bhaskaran R, Duong VQ, Fields GB, Van Doren SR

The catalytic domain of metalloelastase (matrix metalloproteinase-12 or MMP-12) is unique among MMPs in exerting high proteolytic activity upon fibrils that resist hydrolysis, especially elastin from lungs afflicted with chronic obstructive pulmonary disease or arteries with aneurysms. How does the MMP-12 catalytic domain achieve this specificity? NMR interface mapping suggests that ?-elastin species cover the primed subsites, a strip across the ?-sheet from ?-strand IV to the II-III loop, and a broad bowl from helix A to helix C. The many contacts may account for the comparatively high affinity, as well as embedding of MMP-12 in damaged elastin fibrils in vivo. We developed a strategy called BINDSIght, for bioinformatics and NMR discovery of specificity of interactions, to evaluate MMP-12 specificity without a structure of a complex. BINDSIght integration of the interface mapping with other ambiguous information from sequences guided choice mutations in binding regions nearer the active site. Single substitutions at each of ten locations impair specific activity toward solubilized elastin. Five of them impair release of peptides from intact elastin fibrils. Eight lesions also impair specific activity toward triple helices from collagen IV or V. Eight sites map to the "primed" side in the III-IV, V-B, and S1' specificity loops. Two map to the "unprimed" side in the IV-V and B-C loops. The ten key residues circumscribe the catalytic cleft, form an exosite, and are distinctive features available for targeting by new diagnostics or therapeutics.

PMID: 20663866 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] New carbohydrate specificity and HIV-1 fusion blocking activity of the cyanobacterial
New carbohydrate specificity and HIV-1 fusion blocking activity of the cyanobacterial protein MVL: NMR, ITC and sedimentation equilibrium studies. Related Articles New carbohydrate specificity and HIV-1 fusion blocking activity of the cyanobacterial protein MVL: NMR, ITC and sedimentation equilibrium studies. J Mol Biol. 2004 Jun 11;339(4):901-14 Authors: Bewley CA, Cai M, Ray S, Ghirlando R, Yamaguchi M, Muramoto K Carbohydrate-binding proteins that bind their carbohydrate ligands with high affinity are rare and therefore of interest because...
nmrlearner Journal club 0 11-24-2010 09:51 PM
[NMR paper] Heteronuclear NMR studies of the specificity of the post-translational modification o
Heteronuclear NMR studies of the specificity of the post-translational modification of biotinyl domains by biotinyl protein ligase. Related Articles Heteronuclear NMR studies of the specificity of the post-translational modification of biotinyl domains by biotinyl protein ligase. FEBS Lett. 2000 Aug 18;479(3):93-8 Authors: Reche PA, Howard MJ, Broadhurst RW, Perham RN The lipoyl domains of 2-oxo acid dehydrogenase multienzyme complexes and the biotinyl domains of biotin-dependent enzymes have homologous structures, but the target lysine...
nmrlearner Journal club 0 11-19-2010 08:29 PM
[NMR paper] Structural-functional bioinformatics: knowledge-based NMR interpretation.
Structural-functional bioinformatics: knowledge-based NMR interpretation. Related Articles Structural-functional bioinformatics: knowledge-based NMR interpretation. Stud Health Technol Inform. 1998;52 Pt 1:365-6 Authors: Kulikowski CA, Zimmerman D, Montelione G, Anderson S This paper describes a knowledge-based approach to a problem of structural-functional bioinformatics, specifically the determination of protein structure through the automated analysis of NMR data. Highly successful results in carrying out sequence-specific assignments of...
nmrlearner Journal club 0 11-17-2010 11:06 PM
[NMR paper] 111Cd NMR studies of the domain specificity of Ag+ and Cu+ binding to metallothionein
111Cd NMR studies of the domain specificity of Ag+ and Cu+ binding to metallothionein. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-acspubs.jpg Related Articles 111Cd NMR studies of the domain specificity of Ag+ and Cu+ binding to metallothionein. Biochemistry. 1996 Nov 5;35(44):13929-36 Authors: Li H, Otvos JD Metal displacement reactions of Cd7MT with Ag+ or Cu+ and interprotein metal exchange reactions between Cd7MT and Ag12MT or Cu12MT were studied by 111Cd NMR. Titration of 111Cd7MT with Ag+ indicates that...
nmrlearner Journal club 0 08-22-2010 02:20 PM
NMR in Structural Biology - Alessandro Pintar, Protein Structure and Bioinformatics, ICGEB, Trieste
Nuclear Magnetic Resonance in Structural Biology - Alessandro Pintar, Protein Structure and Bioinformatics, ICGEB, Trieste Thanks to advancements both in the theory and in the instrumentation, Nuclear Magnetic Resonance (NMR) has widened its use from small organic molecules to oligosaccharides, peptides, proteins, and nucleic acids. Together with X-ray crystallography, NMR is the only technique that can provide structural information at the atomic level. However, applications of NMR are not limited to 3D structure calculation: it can be used to study flexible biomolecules (peptides,...
MCGowan Educational web pages 0 09-16-2008 01:50 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 01:18 PM.


Map