BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 11-24-2010, 09:01 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,135
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default NMR-based screening methods for lead discovery.

NMR-based screening methods for lead discovery.

Related Articles NMR-based screening methods for lead discovery.

EXS. 2003;(93):183-202

Authors: Vogtherr M, Fiebig K

Diversity and robustness of NMR based screening methods make these techniques highly attractive as tools for drug discovery. Although not all screening techniques discussed here may be applicable to any given target, there is however a good chance that at least one of the described methods will prove productive in finding several medium affinity ligands. A comparison of each of the methods is given in Table 1. For drug targets of molecular weight < 30 kDa SAR by NMR appears to be the method of choice since it yields detailed information about the location of the binding site. It remains to be seen whether 15N-1H-TROSY based screening techniques will prove useful for larger protein targets, especially considering the added effort needed for spectral assignment and the increased complexity due to spectral overlap. Nevertheless, with the application of new cryo-cooled NMR probes, 15N-1H-HSQC based screening can now be considered a high throughput method. Ligand-based NMR screening methods can be used for protein targets of virtually any size, but are restricted in the ligand's binding affinity range. Because sufficient ligand-protein dissociation rates are needed, only binding of ligands with low (milimolar) to intermediate (micromolar) affinities is detectable. It is expected that cryo-cooled NMR probe technology will also advance ligand detected NMR screening to the high throughput level. Certainly protein and ligand concentrations can be lowered drastically and experiment times can be shortened with increased sensitivity. However, spectral overlap will be of major concern when mixtures of up to 100 compounds are to be screened. For such applications only techniques for which the signals of bound ligands survive will be useful, and sophisticated software will be needed to deconvolute the spectra of multiple bound ligands. Although only ligands with medium to low affinities can be found, ligand based NMR screening has been used as an effective prescreening tool for assay based high throughput screening. Identifying a large ensemble of medium affinity ligands may not only aid in building a binding site pharmacophore model (see Chapter 11), but also may yield crucial information for overcoming tissue availability, toxicity, or even intellectual property related problems. Although NMR based screening is only one of the more recent additions to the bag of tools used in drug discovery [1, 2], its simplicity and wide range of application (including protein-protein and protein-nucleic acid interactions) has attracted much attention. Advances in NMR instrumentation and methodology have already paved the road for NMR based screening to become a high throughput technique. In addition to this, NMR is exceptional in the amount of detailed structural [table: see text] information it can provide. Not only can NMR readily reveal the binding site (15N-1H-HSQC screening) or the conformation of the bound ligand (transfer NOE), but it can also supply information that enables precise docking of the ligand to the protein's binding pocket (isotope-filtered NOESY). NMR data can therefore provide a natural connection between experimental HTS and combinatorial chemistry techniques with computational methods such as 3D-database searching (see Chapter 10), virtual screening (docking) and structure-based ligand design (see also Chapter 8).

PMID: 12613177 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR in the fragment-based drug discovery].
. . Tanpakushitsu Kakusan Koso. 2009 Sep;54(12 Suppl):1617-21 Authors: Hanzawa H, Takizawa T
nmrlearner Journal club 0 01-28-2011 01:50 PM
Fragment-based discovery of novel thymidylate synthase leads by NMR screening and group epitope mapping.
Fragment-based discovery of novel thymidylate synthase leads by NMR screening and group epitope mapping. Fragment-based discovery of novel thymidylate synthase leads by NMR screening and group epitope mapping. Chem Biol Drug Des. 2010 Sep 1;76(3):218-33 Authors: Begley DW, Zheng S, Varani G Solution-state nuclear magnetic resonance (NMR) is a versatile tool for the study of binding interactions between small molecules and macromolecular targets. We applied ligand-based NMR techniques to the study of human thymidylate synthase (hTS) using known...
nmrlearner Journal club 0 01-05-2011 09:51 PM
[NMR paper] NMR-based methods and strategies for drug discovery.
NMR-based methods and strategies for drug discovery. Related Articles NMR-based methods and strategies for drug discovery. Chem Soc Rev. 2003 Nov;32(6):365-72 Authors: Salvatella X, Giralt E Nuclear Magnetic Resonance (NMR) spectroscopy has long been a favourite tool of chemists interested in host-guest systems because it permits access to a wealth of information about the molecular recognition reaction. NMR has evolved dramatically in the last 15 years and, in parallel with the development of NMR methods for the determination of protein...
nmrlearner Journal club 0 11-24-2010 09:16 PM
[NMR paper] The SHAPES strategy: an NMR-based approach for lead generation in drug discovery.
The SHAPES strategy: an NMR-based approach for lead generation in drug discovery. Related Articles The SHAPES strategy: an NMR-based approach for lead generation in drug discovery. Chem Biol. 1999 Oct;6(10):755-69 Authors: Fejzo J, Lepre CA, Peng JW, Bemis GW, Ajay , Murcko MA, Moore JM BACKGROUND: Recently, it has been shown that nuclear magnetic resonance (NMR) may be used to identify ligands that bind to low molecular weight protein drug targets. Recognizing the utility of NMR as a very sensitive method for detecting binding, we have...
nmrlearner Journal club 0 11-18-2010 08:31 PM
NMR Screening and Hit Validation in Fragment Based Drug Discovery.
NMR Screening and Hit Validation in Fragment Based Drug Discovery. Related Articles NMR Screening and Hit Validation in Fragment Based Drug Discovery. Curr Top Med Chem. 2010 Sep 2; Authors: Campos-Olivas R Over the past three decades nuclear magnetic resonance spectroscopy has been developed into a mature technique for the characterization of interactions of small molecule ligands with their corresponding protein and nucleic acid receptors. In fact, a significant number of industrial and academic laboratories employ NMR for screening small...
nmrlearner Journal club 0 09-03-2010 02:30 PM
[BMNRC community] NMR-based screening: a powerful tool in fragment-based drug discovery
NMR-based screening: a powerful tool in fragment-based drug discovery http://www.rsc.org/delivery/_ArticleLinking/DisplayHTMLArticleforfree.cfm?JournalCode=AN&Year=2007&ManuscriptID=b709658p&Iss=7 Go to BMNRC community to find more info about this topic.
nmrlearner News from other NMR forums 0 09-02-2010 04:59 AM
[NMR paper] NMR-based discovery of lead inhibitors that block DNA binding of the human papillomav
NMR-based discovery of lead inhibitors that block DNA binding of the human papillomavirus E2 protein. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-acspubs.jpg Related Articles NMR-based discovery of lead inhibitors that block DNA binding of the human papillomavirus E2 protein. J Med Chem. 1997 Sep 26;40(20):3144-50 Authors: Hajduk PJ, Dinges J, Miknis GF, Merlock M, Middleton T, Kempf DJ, Egan DA, Walter KA, Robins TS, Shuker SB, Holzman TF, Fesik SW The E2 protein is required for the replication of human...
nmrlearner Journal club 0 08-22-2010 05:08 PM
[NMR paper] NMR screening in drug discovery.
NMR screening in drug discovery. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles NMR screening in drug discovery. Curr Opin Biotechnol. 1999 Feb;10(1):54-8 Authors: Moore JM NMR methods in drug discovery have traditionally been used to obtain structural information for drug targets or target-ligand complexes. Recently, it has been shown that NMR may be used as an alternative approach for identification of ligands that bind to protein drug targets, shifting the emphasis...
nmrlearner Journal club 0 08-21-2010 04:03 PM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 07:50 PM.


Map