BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 11-16-2013, 03:14 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,178
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default NMR assignments for the cis and trans forms of the hemolysin II C-terminal domain.

NMR assignments for the cis and trans forms of the hemolysin II C-terminal domain.

Related Articles NMR assignments for the cis and trans forms of the hemolysin II C-terminal domain.

Biomol NMR Assign. 2013 Nov 15;

Authors: Kaplan AR, Maciejewski MW, Olson R, Alexandrescu AT

Abstract
Pathogenic bacteria secrete pore-forming toxins (PFTs) to selectively defend against immune cells and to break through cellular barriers in the host. Understanding how PFTs attack cell membranes is not only essential for therapeutic intervention but for designing agents to deliver drugs to specific human cell subtypes, for example in anti-cancer or anti-viral therapies. Many toxins contain accessory domains that help recognize specific molecular epitopes on the membranes of target cells, including proteins, carbohydrates, and lipids. Here we report NMR assignments for the 94-residue 10*kDa C-terminal accessory domain of Bacillus cereus hemolysin II, HlyIIC, that has no known structural or functional homologues. The HlyIIC domain exists in a dynamic equilibrium due to cis/trans isomerization of its Gly86-Pro87 peptide bond. The cis and trans forms are about equally populated and are in slow exchange on the NMR timescale, giving rise to separate signals for approximately half of the residues in the domain. Assignments for the cis and trans forms were achieved with the aid of a P87M mutant that stabilizes the trans form, and separate sequential walks for the two forms in 3D NMR spectra of the wild-type HlyIIC. Based on backbone chemical shifts, the domain has a ?1-?2-?1-?2-?3-?4-?3-?5 order of secondary structure elements. The last strand in the trans form and in the P87M mutant is shortened near Pro87 compared to the cis form. Both cis/trans isomerization and the P87M mutation cause large chemical shift changes throughout HlyIIC, suggesting that the proline is important in stabilizing the structure of the domain. The NMR assignments pave the way for solving the structures of the multiple conformational forms of HlyIIC and establishing their mechanism of interconversion.


PMID: 24234348 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] (1)H, (13)C, (15)N backbone and side chain NMR resonance assignments of the N-terminal NEAr iron transporter domain 1 (NEAT 1) of the hemoglobin receptor IsdB of Staphylococcus aureus.
(1)H, (13)C, (15)N backbone and side chain NMR resonance assignments of the N-terminal NEAr iron transporter domain 1 (NEAT 1) of the hemoglobin receptor IsdB of Staphylococcus aureus. Related Articles (1)H, (13)C, (15)N backbone and side chain NMR resonance assignments of the N-terminal NEAr iron transporter domain 1 (NEAT 1) of the hemoglobin receptor IsdB of Staphylococcus aureus. Biomol NMR Assign. 2013 May 18; Authors: Fonner BA, Tripet BP, Lui M, Zhu H, Lei B, Copié V Abstract Staphylococcus aureus is an opportunistic pathogen that...
nmrlearner Journal club 0 05-21-2013 02:34 PM
Extensive de novo solid-state NMR assignments of the 33 kDa C-terminal domain of the Ure2 prion
Extensive de novo solid-state NMR assignments of the 33 kDa C-terminal domain of the Ure2 prion Abstract We present the de novo resonance assignments for the crystalline 33 kDa C-terminal domain of the Ure2 prion using an optimized set of five 3D solid-state NMR spectra. We obtained, using a single uniformly 13C, 15N labeled protein sample, sequential chemical-shift information for 74% of the N, Cα, Cβ triples, and for 80% of further side-chain resonances for these spin systems. We describe the procedures and protocols devised, and discuss possibilities and limitations of the...
nmrlearner Journal club 0 08-04-2011 01:14 AM
Extensive de novo solid-state NMR assignments of the 33*kDa C-terminal domain of the Ure2 prion.
Extensive de novo solid-state NMR assignments of the 33*kDa C-terminal domain of the Ure2 prion. Extensive de novo solid-state NMR assignments of the 33*kDa C-terminal domain of the Ure2 prion. J Biomol NMR. 2011 Jul 31; Authors: Habenstein B, Wasmer C, Bousset L, Sourigues Y, Schütz A, Loquet A, Meier BH, Melki R, Böckmann A We present the de novo resonance assignments for the crystalline 33*kDa C-terminal domain of the Ure2 prion using an optimized set of five 3D solid-state NMR spectra. We obtained, using a single uniformly (13)C, (15)N labeled...
nmrlearner Journal club 0 08-02-2011 11:40 AM
NMR assignments of the N-terminal domain of Nephila clavipes spidroin 1.
NMR assignments of the N-terminal domain of Nephila clavipes spidroin 1. NMR assignments of the N-terminal domain of Nephila clavipes spidroin 1. Biomol NMR Assign. 2010 Dec 10; Authors: Parnham S, Gaines WA, Duggan BM, Marcotte WR, Hennig M The building blocks of spider dragline silk are two fibrous proteins secreted from the major ampullate gland named spidroins 1 and 2 (MaSp1, MaSp2). These proteins consist of a large central domain composed of approximately 100 tandem copies of a 35-40 amino acid repeat sequence. Non-repetitive N and...
nmrlearner Journal club 0 12-15-2010 12:03 PM
[NMR paper] NMR structures of salt-refolded forms of the 434-repressor DNA-binding domain in 6 M
NMR structures of salt-refolded forms of the 434-repressor DNA-binding domain in 6 M urea. Related Articles NMR structures of salt-refolded forms of the 434-repressor DNA-binding domain in 6 M urea. Biochemistry. 2004 Nov 9;43(44):13937-43 Authors: Pervushin K, Wider G, Iwai H, Wüthrich K The N-terminal 63-residue fragment of the phage 434-repressor, 434(1-63), has a well-defined globular fold in H(2)O solution, and is unfolded in 6 M urea at pH 7.5. In this study, 434(1-63) has been refolded by adding either 1.7 M NaCl or 0.47 M NaTFA to the...
nmrlearner Journal club 0 11-24-2010 10:03 PM
[NMR paper] NMR solution structure and dynamics of the peptidyl-prolyl cis-trans isomerase domain
NMR solution structure and dynamics of the peptidyl-prolyl cis-trans isomerase domain of the trigger factor from Mycoplasma genitalium compared to FK506-binding protein. Related Articles NMR solution structure and dynamics of the peptidyl-prolyl cis-trans isomerase domain of the trigger factor from Mycoplasma genitalium compared to FK506-binding protein. J Mol Biol. 2002 May 10;318(4):1097-115 Authors: Vogtherr M, Jacobs DM, Parac TN, Maurer M, Pahl A, Saxena K, Rüterjans H, Griesinger C, Fiebig KM We have solved the solution structure of the...
nmrlearner Journal club 0 11-24-2010 08:49 PM
[NMR paper] Backbone 1H and 15N resonance assignments of the N-terminal SH3 domain of drk in fold
Backbone 1H and 15N resonance assignments of the N-terminal SH3 domain of drk in folded and unfolded states using enhanced-sensitivity pulsed field gradient NMR techniques. Related Articles Backbone 1H and 15N resonance assignments of the N-terminal SH3 domain of drk in folded and unfolded states using enhanced-sensitivity pulsed field gradient NMR techniques. J Biomol NMR. 1994 Nov;4(6):845-58 Authors: Zhang O, Kay LE, Olivier JP, Forman-Kay JD The backbone 1H and 15N resonances of the N-terminal SH3 domain of the Drosophila signaling adapter...
nmrlearner Journal club 0 08-22-2010 03:29 AM
[NMR paper] Complete 15N and 1H NMR assignments for the amino-terminal domain of the phage 434 re
Complete 15N and 1H NMR assignments for the amino-terminal domain of the phage 434 repressor in the urea-unfolded form. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles Complete 15N and 1H NMR assignments for the amino-terminal domain of the phage 434 repressor in the urea-unfolded form. Proc Natl Acad Sci U S A. 1992 May 15;89(10):4397-401 Authors: Neri D, Wider G, Wüthrich K The amino-terminal domain of the phage 434 repressor consisting of residues 1-69...
nmrlearner Journal club 0 08-21-2010 11:41 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 03:51 AM.


Map