BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 03-21-2013, 02:58 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,173
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default NMR analysis of a novel enzymatically-active unlinked Dengue NS2B-NS3 protease complex.

NMR analysis of a novel enzymatically-active unlinked Dengue NS2B-NS3 protease complex.

Related Articles NMR analysis of a novel enzymatically-active unlinked Dengue NS2B-NS3 protease complex.

J Biol Chem. 2013 Mar 19;

Authors: Kim YM, Gayen S, Kang C, Joy J, Huang Q, Chen AS, Wee JL, Ang MJ, Lim HA, Hung AW, Li R, Noble CG, Lee LT, Yip A, Wang QY, Chia CS, Hill J, Shi PY, Keller TH

Abstract
The dengue virus (DENV) is a mosquito-borne pathogen responsible for an estimated 100 million human infections annually. The viral genome encodes a two-component trypsin-like protease that contains a cofactor region from the nonstructural (NS) protein 2B and the protease domain from NS3 (NS3pro). The NS2B-NS3pro plays a crucial role in viral maturation and has been identified as a potential drug target. Using a DENV protease construct containing NS2B covalently linked to NS3pro via a Gly4-S-Gly4 linker (linked protease), X-ray crystal structures indicate that the C-terminal fragment of NS2B is remote from NS3pro and exists in an open state in the absence of an inhibitor, however in the presence of an inhibitor, NS2B complexes with NS3pro to form a closed state. This linked enzyme produced NMR spectra with severe signal overlap and line broadening. In order to obtain a protease construct with a resolved NMR spectrum, we expressed and purified an unlinked protease complex containing a 50-residue region of NS2B cofactor region and NS3pro without the glycine linker using a co-expression system. This unlinked protease complex is catalytically active at neutral pH in the absence of glycerol and produced dispersed cross-peaks in an 1H-15N- HSQC spectrum that enabled us to conduct backbone assignments using conventional techniques. In addition, titration with an active-site peptide aldehyde inhibitor and paramagnetic relaxation enhancement (PRE) studies demonstrated that the unlinked DENV protease exists predominantly in a closed conformation in solution. This protease complex can serve as a useful tool for drug discovery against the DENV.


PMID: 23511634 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] An NMR comparison of the light-harvesting complex II (LHCII) in active and photoprotective states reveals subtle changes in the chlorophyll a ground-state electronic structures.
An NMR comparison of the light-harvesting complex II (LHCII) in active and photoprotective states reveals subtle changes in the chlorophyll a ground-state electronic structures. Related Articles An NMR comparison of the light-harvesting complex II (LHCII) in active and photoprotective states reveals subtle changes in the chlorophyll a ground-state electronic structures. Biochim Biophys Acta. 2013 Mar 4; Authors: Pandit A, Reus M, Morosinotto T, Bassi R, Holzwarth AR, de Groot HJ Abstract To protect the photosynthetic apparatus against...
nmrlearner Journal club 0 03-08-2013 10:35 PM
Protein Analysis by (31)P NMR Spectroscopy in Ionic Liquid: Quantitative Determination of Enzymatically Created Cross-Links.
Protein Analysis by (31)P NMR Spectroscopy in Ionic Liquid: Quantitative Determination of Enzymatically Created Cross-Links. Protein Analysis by (31)P NMR Spectroscopy in Ionic Liquid: Quantitative Determination of Enzymatically Created Cross-Links. J Agric Food Chem. 2011 Jan 10; Authors: Monogioudi E, Permi P, Filpponen I, Lienemann M, Li B, Argyropoulos D, Buchert J, Mattinen ML Cross-linking of ?-casein by Trichoderma reesei tyrosinase (TrTyr) and Streptoverticillium mobaraense transglutaminase (Tgase) was analyzed by (31)P nuclear magnetic...
nmrlearner Journal club 0 01-12-2011 11:11 AM
[NMR paper] NMR analysis of the transient complex between membrane photosystem I and soluble cyto
NMR analysis of the transient complex between membrane photosystem I and soluble cytochrome c6. Related Articles NMR analysis of the transient complex between membrane photosystem I and soluble cytochrome c6. J Biol Chem. 2005 Mar 4;280(9):7925-31 Authors: Díaz-Moreno I, Díaz-Quintana A, Molina-Heredia FP, Nieto PM, Hansson O, De la Rosa MA, Karlsson BG A structural analysis of the surface areas of cytochrome c(6), responsible for the transient interaction with photosystem I, was performed by NMR transverse relaxation-optimized spectroscopy....
nmrlearner Journal club 0 11-24-2010 10:03 PM
[NMR paper] NMR structural analysis of alpha-bungarotoxin and its complex with the principal alph
NMR structural analysis of alpha-bungarotoxin and its complex with the principal alpha-neurotoxin-binding sequence on the alpha 7 subunit of a neuronal nicotinic acetylcholine receptor. Related Articles NMR structural analysis of alpha-bungarotoxin and its complex with the principal alpha-neurotoxin-binding sequence on the alpha 7 subunit of a neuronal nicotinic acetylcholine receptor. J Biol Chem. 2002 Apr 5;277(14):12406-17 Authors: Moise L, Piserchio A, Basus VJ, Hawrot E We report a new, higher resolution NMR structure of...
nmrlearner Journal club 0 11-24-2010 08:49 PM
[NMR paper] Analysis of stress in the active site of myosin accompanied by conformational changes
Analysis of stress in the active site of myosin accompanied by conformational changes in transient state intermediate complexes using photoaffinity labeling and 19F-NMR spectroscopy. Related Articles Analysis of stress in the active site of myosin accompanied by conformational changes in transient state intermediate complexes using photoaffinity labeling and 19F-NMR spectroscopy. Eur J Biochem. 1998 Mar 15;252(3):520-9 Authors: Maruta S, Henry GD, Ohki T, Kambara T, Sykes BD, Ikebe M Myosin forms stable ternary complexes with ADP and the...
nmrlearner Journal club 0 11-17-2010 11:06 PM
[NMR paper] Complex of plastocyanin and cytochrome c characterized by NMR chemical shift analysis
Complex of plastocyanin and cytochrome c characterized by NMR chemical shift analysis. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-acspubs.jpg Related Articles Complex of plastocyanin and cytochrome c characterized by NMR chemical shift analysis. Biochemistry. 1997 May 27;36(21):6326-35 Authors: Ubbink M, Bendall DS The complexes of horse ferrous and ferric cytochrome c with Cd-substituted pea plastocyanin have been characterized by nuclear magnetic resonance, in order to determine the binding sites and to study...
nmrlearner Journal club 0 08-22-2010 03:31 PM
[NMR paper] Complex of plastocyanin and cytochrome c characterized by NMR chemical shift analysis
Complex of plastocyanin and cytochrome c characterized by NMR chemical shift analysis. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-acspubs.jpg Related Articles Complex of plastocyanin and cytochrome c characterized by NMR chemical shift analysis. Biochemistry. 1997 May 27;36(21):6326-35 Authors: Ubbink M, Bendall DS The complexes of horse ferrous and ferric cytochrome c with Cd-substituted pea plastocyanin have been characterized by nuclear magnetic resonance, in order to determine the binding sites and to study...
nmrlearner Journal club 0 08-22-2010 03:03 PM
[NMR paper] Mapping hydration water molecules in the HIV-1 protease/DMP323 complex in solution by
Mapping hydration water molecules in the HIV-1 protease/DMP323 complex in solution by NMR spectroscopy. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-acspubs.jpg Related Articles Mapping hydration water molecules in the HIV-1 protease/DMP323 complex in solution by NMR spectroscopy. Biochemistry. 1996 Oct 1;35(39):12694-704 Authors: Wang YX, Freedberg DI, Grzesiek S, Torchia DA, Wingfield PT, Kaufman JD, Stahl SJ, Chang CH, Hodge CN A tetrahedrally hydrogen-bonded structural water molecule, water 301, is seen in...
nmrlearner Journal club 0 08-22-2010 02:20 PM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 01:43 AM.


Map