BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 08-02-2011, 11:40 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,173
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default NMR Analysis of a Kinetically Trapped Intermediate of a Disulfide-Deficient Mutant of the Starch-Binding Domain of Glucoamylase.

NMR Analysis of a Kinetically Trapped Intermediate of a Disulfide-Deficient Mutant of the Starch-Binding Domain of Glucoamylase.

NMR Analysis of a Kinetically Trapped Intermediate of a Disulfide-Deficient Mutant of the Starch-Binding Domain of Glucoamylase.

J Mol Biol. 2011 Jul 23;

Authors: Sugimoto H, Noda Y, Segawa SI

A thermally unfolded disulfide-deficient mutant of the starch-binding domain of glucoamylase refolds into a kinetically trapped metastable intermediate when subjected to a rapid lowering of temperature. We attempted to characterise this intermediate using multidimensional NMR spectroscopy. The (1)H-(15)N heteronuclear single quantum coherence spectrum after a rapid temperature decrease (the spectrum of the intermediate) showed good chemical shift dispersion but was significantly different from that of the native state, suggesting that the intermediate adopts a nonnative but well-structured conformation. Large chemical shift changes for the backbone amide protons between the native and the intermediate states were observed for residues in the ?-sheet consisting of strands 2, 3, 5, 6, and 7 as well as in the C-terminal region. These residues were found to be in close proximity to aromatic residues, suggesting that the chemical shift changes are mainly due to ring current shifts caused by the aromatic residues. The two-dimensional nuclear Overhauser enhancement (NOE) spectroscopy experiments showed that the intermediate contained substantial, native-like NOE connectivities, although there were fewer cross peaks in the spectrum of the intermediate compared with that of the native state. It was also shown that there were native-like interresidue NOEs for residues buried in the protein, whereas many of the NOE cross peaks were lost for the residues involved in a surface-exposed aromatic cluster. These results suggest that, in the intermediate, the aromatic cluster at the surface is structurally less organised, whereas the interior of the protein has relatively rigid, native-like side-chain packing.

PMID: 21801731 [PubMed - as supplied by publisher]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Insulin-like growth factor binding protein-2: NMR analysis and structural characterization of the N-terminal domain.
Insulin-like growth factor binding protein-2: NMR analysis and structural characterization of the N-terminal domain. Insulin-like growth factor binding protein-2: NMR analysis and structural characterization of the N-terminal domain. Biochimie. 2011 Sep 22; Authors: Galea CA, Mobli M, McNeil KA, Mulhern TD, Wallace JC, King GF, Forbes BE, Norton RS Abstract The insulin-like growth factor binding proteins are a family of six proteins (IGFBP-1 to 6) that bind insulin-like growth factors-I and -II (IGF-I/II) with high affinity. In addition...
nmrlearner Journal club 0 09-30-2011 06:00 AM
Insulin-like growth factor binding protein-2: NMR analysis and structural characterization of the N-terminal domain.
Insulin-like growth factor binding protein-2: NMR analysis and structural characterization of the N-terminal domain. Insulin-like growth factor binding protein-2: NMR analysis and structural characterization of the N-terminal domain. Biochimie. 2011 Sep 22; Authors: Galea CA, Mobli M, McNeil KA, Mulhern TD, Wallace JC, King GF, Forbes BE, Norton RS Abstract The insulin-like growth factor binding proteins are a family of six proteins (IGFBP-1 to 6) that bind insulin-like growth factors-I and -II (IGF-I/II) with high affinity. In...
nmrlearner Journal club 0 09-30-2011 05:59 AM
An NMR study of the N-terminal domain of wild-type hERG and a T65P trafficking deficient hERG mutant.
An NMR study of the N-terminal domain of wild-type hERG and a T65P trafficking deficient hERG mutant. An NMR study of the N-terminal domain of wild-type hERG and a T65P trafficking deficient hERG mutant. Proteins. 2011 May 16; Authors: Gayen S, Li Q, Chen AS, Nguyen TH, Huang Q, Hill J, Kang C The human Ether-à-go-go Related Gene (hERG) potassium channel plays an important role in the heart by controlling the rapid delayed rectifier current. The N-terminal 135 residues (NTD) contain a Per-Arnt-Sim (PAS) domain and an N-terminal amphipathic helix....
nmrlearner Journal club 0 06-12-2011 12:15 AM
NMR analysis reveals 17?-estradiol induced conformational change in ER? ligand binding domain expressed in E. coli.
NMR analysis reveals 17?-estradiol induced conformational change in ER? ligand binding domain expressed in E. coli. NMR analysis reveals 17?-estradiol induced conformational change in ER? ligand binding domain expressed in E. coli. Mol Biol Rep. 2010 Dec 12; Authors: Paramanik V, Thakur MK Nuclear magnetic resonance (NMR) spectroscopy is a useful biophysical technique to study the ligand-protein interaction. In this report, we have used bacterially produced ER? and its domains for studying the functional analysis of ligand-protein interaction....
nmrlearner Journal club 0 12-15-2010 12:03 PM
[NMR paper] NMR and ICP spectroscopic analysis of the DNA-binding domain of the Drosophila GCM pr
NMR and ICP spectroscopic analysis of the DNA-binding domain of the Drosophila GCM protein reveals a novel Zn2+ -binding motif. Related Articles NMR and ICP spectroscopic analysis of the DNA-binding domain of the Drosophila GCM protein reveals a novel Zn2+ -binding motif. Protein Eng. 2003 Apr;16(4):247-54 Authors: Shimizu M, Hiroaki H, Kohda D, Hosoya T, Akiyama-Oda Y, Hotta Y, Morita EH, Morikawa K Drosophila GCM (glial cell missing) is a novel DNA-binding protein that determines the fate of glial precursors from the neural default to glia....
nmrlearner Journal club 0 11-24-2010 09:01 PM
[NMR paper] Structure and dynamic properties of the single disulfide-deficient alpha-amylase inhi
Structure and dynamic properties of the single disulfide-deficient alpha-amylase inhibitor tendamistat: an NMR study. Related Articles Structure and dynamic properties of the single disulfide-deficient alpha-amylase inhibitor tendamistat: an NMR study. Proteins. 1998 Nov 1;33(2):285-94 Authors: Balbach J, Seip S, Kessler H, Scharf M, Kashani-Poor N, Engels JW Covalent linkages such as disulfide bonds are important for the stabilization of proteins. In the present NMR study we compare the structure and the dynamics of the single...
nmrlearner Journal club 0 11-17-2010 11:15 PM
[NMR paper] NMR analysis of CYP1(HAP1) DNA binding domain-CYC1 upstream activation sequence inter
NMR analysis of CYP1(HAP1) DNA binding domain-CYC1 upstream activation sequence interactions: recognition of a CGG trinucleotide and of an additional thymine 5 bp downstream by the zinc cluster and the N-terminal extremity of the protein. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--highwire.stanford.edu-icons-externalservices-pubmed-custom-oxfordjournals_final_free.gif http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles NMR analysis of CYP1(HAP1) DNA binding domain-CYC1 upstream...
nmrlearner Journal club 0 08-22-2010 05:08 PM
[NMR paper] Identification of trapped and boundary lipid binding sites in M13 coat protein/lipid
Identification of trapped and boundary lipid binding sites in M13 coat protein/lipid complexes by deuterium NMR spectroscopy. Related Articles Identification of trapped and boundary lipid binding sites in M13 coat protein/lipid complexes by deuterium NMR spectroscopy. Biochemistry. 1990 Apr 24;29(16):3828-34 Authors: Van Gorkom LC, Horváth LI, Hemminga MA, Sternberg B, Watts A The major coat protein of M13 bacteriophage has been incorporated into bilayers of 1,2-dimyristoyl-sn-glycero-3-phosphocholine, deuterated in the trimethyl segments of...
nmrlearner Journal club 0 08-21-2010 10:48 PM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 07:12 AM.


Map