BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 08-08-2017, 10:10 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,178
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default MonitoringHydrogen Exchange During Protein Foldingby Fast Pressure Jump NMR Spectroscopy

MonitoringHydrogen Exchange During Protein Foldingby Fast Pressure Jump NMR Spectroscopy

T. Reid Alderson, Cyril Charlier, Dennis A. Torchia, Philip Anfinrud and Ad Bax



Journal of the American Chemical Society
DOI: 10.1021/jacs.7b06676




Source: Journal of the American Chemical Society
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Monitoring Hydrogen Exchange During Protein Folding by Fast Pressure Jump NMR Spectroscopy.
Monitoring Hydrogen Exchange During Protein Folding by Fast Pressure Jump NMR Spectroscopy. Related Articles Monitoring Hydrogen Exchange During Protein Folding by Fast Pressure Jump NMR Spectroscopy. J Am Chem Soc. 2017 Aug 02;: Authors: Alderson TR, Charlier C, Torchia DA, Anfinrud P, Bax A Abstract A method is introduced that permits direct observation of the rates at which backbone amide hydrogens become protected from solvent exchange after rapidly dropping the hydrostatic pressure inside the NMR sample cell from denaturing...
nmrlearner Journal club 0 08-03-2017 11:48 AM
Cavities and Cooperativity in the Folding of the Leucine Rich Repeat Protein PP32: A Pressure-Jump Fluorescence and High Pressure NMR Study
Cavities and Cooperativity in the Folding of the Leucine Rich Repeat Protein PP32: A Pressure-Jump Fluorescence and High Pressure NMR Study Publication date: 3 February 2017 Source:Biophysical Journal, Volume 112, Issue 3, Supplement 1</br> Author(s): Kelly A. Jenkins, Martin Fossat, Thuy Dao, Yi Zhang, Zackery White, Doug Barrick, Catherine A. Royer</br> </br></br> </br></br> More...
nmrlearner Journal club 0 02-03-2017 09:55 PM
[NMR paper] Rapid Determination of Fast Protein Dynamics from NMR Chemical Exchange Saturation Transfer Data.
Rapid Determination of Fast Protein Dynamics from NMR Chemical Exchange Saturation Transfer Data. Related Articles Rapid Determination of Fast Protein Dynamics from NMR Chemical Exchange Saturation Transfer Data. Angew Chem Int Ed Engl. 2016 Jan 28; Authors: Gu Y, Hansen AL, Peng Y, Brüschweiler R Abstract Functional motions of (15) N-labeled proteins can be monitored by solution NMR spin relaxation experiments over a broad range of timescales. These experiments however typically take of the order of several days to a week per...
nmrlearner Journal club 0 01-30-2016 09:13 PM
Effect of Internal Cavities on Folding Rates and RoutesRevealed by Real-Time Pressure-Jump NMR Spectroscopy
Effect of Internal Cavities on Folding Rates and RoutesRevealed by Real-Time Pressure-Jump NMR Spectroscopy Julien Roche, Mariano Dellarole, Jose? A. Caro, Douglas R. Norberto, Angel E. Garcia, Bertrand Garcia-Moreno, Christian Roumestand and Catherine A. Royer http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja406682e/aop/images/medium/ja-2013-06682e_0007.gif Journal of the American Chemical Society DOI: 10.1021/ja406682e http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA...
nmrlearner Journal club 0 09-19-2013 02:19 PM
[NMR paper] Effect of Internal Cavities on Folding Rates and Routes Revealed by Real-time Pressure-Jump NMR Spectroscopy.
Effect of Internal Cavities on Folding Rates and Routes Revealed by Real-time Pressure-Jump NMR Spectroscopy. Effect of Internal Cavities on Folding Rates and Routes Revealed by Real-time Pressure-Jump NMR Spectroscopy. J Am Chem Soc. 2013 Aug 30; Authors: Roche J, Dellarole M, Caro JA, Norberto DR, Garcia AE, Garcia-Moreno E B, Roumestand C, Royer CA Abstract The time required to fold proteins usually increases significantly under conditions of high pressure. Taking advantage of this general property of proteins, we combined P-jump...
nmrlearner Journal club 0 08-31-2013 06:56 PM
[NMR paper] Impact of Hydrostatic Pressure on an Intrinsically Disordered Protein: A High-Pressure NMR Study of ?-Synuclein.
Impact of Hydrostatic Pressure on an Intrinsically Disordered Protein: A High-Pressure NMR Study of ?-Synuclein. Related Articles Impact of Hydrostatic Pressure on an Intrinsically Disordered Protein: A High-Pressure NMR Study of ?-Synuclein. Chembiochem. 2013 Jun 28; Authors: Roche J, Ying J, Maltsev AS, Bax A Abstract The impact of pressure on the backbone (15) N, (1) H and (13) C chemical shifts in N-terminally acetylated ?-synuclein has been evaluated over a pressure range 1-2500 bar. Even while the chemical shifts fall very close...
nmrlearner Journal club 0 07-03-2013 01:46 PM
Li Ion Diffusion in the Anode Material Li12Si7: Ultrafast Quasi-1D Diffusion and Two Distinct Fast 3D Jump Processes Separately Revealed by 7Li NMR Relaxometry
Li Ion Diffusion in the Anode Material Li12Si7: Ultrafast Quasi-1D Diffusion and Two Distinct Fast 3D Jump Processes Separately Revealed by 7Li NMR Relaxometry Alexander Kuhn, Puravankara Sreeraj, Rainer Po?ttgen, Hans-Dieter Wiemho?fer, Martin Wilkening and Paul Heitjans http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja2020108/aop/images/medium/ja-2011-020108_0005.gif Journal of the American Chemical Society DOI: 10.1021/ja2020108 http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA...
nmrlearner Journal club 0 06-28-2011 04:32 AM
15N SOFAST-HMQC to study fast H-D exchange
Very Fast Two-Dimensional NMR Spectroscopy for Real-Time Investigation of Dynamic Events in Proteins on the Time Scale of Seconds Paul Schanda and Bernhard Brutscher J. Am. Chem. Soc.; 2005; 127(22) pp 8014 - 8015 http://pubs.acs.org/isubscribe/journals/jacsat/127/i22/figures/ja051306en00001.gif Abstract: We demonstrate for different protein samples that 2D 1H-15N correlation NMR spectra can be recorded in a few seconds of acquisition time using a new band-selective optimized flip-angle short-transient heteronuclear multiple quantum coherence experiment. This has enabled us to...
nmrlearner Journal club 0 06-21-2005 06:21 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 05:47 AM.


Map