BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 08-22-2010, 02:20 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,173
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Molecular dynamics-derived conformation and intramolecular interaction analysis of th

Molecular dynamics-derived conformation and intramolecular interaction analysis of the N-acetyl-9-O-acetylneuraminic acid-containing ganglioside GD1a and NMR-based analysis of its binding to a human polyclonal immunoglobulin G fraction with selectivity for O-acetylated sialic acids.

Related Articles Molecular dynamics-derived conformation and intramolecular interaction analysis of the N-acetyl-9-O-acetylneuraminic acid-containing ganglioside GD1a and NMR-based analysis of its binding to a human polyclonal immunoglobulin G fraction with selectivity for O-acetylated sialic acids.

Glycobiology. 1996 Sep;6(6):561-72

Authors: Siebert HC, von der Lieth CW, Dong X, Reuter G, Schauer R, Gabius HJ, Vliegenthart JF

The influence of 9-O-acetylation of GD1a, yielding GD1a (eNeu5,9Ac2) with a 9-O-acetylated sialic acid moiety linked to the outer galactose residue, on the spatial extension and mobility of the carbohydrate chain and on recognition by a natural human antibody is analysed. To study a potential impact of the O-acetyl group on the overall conformation of the carbohydrate chain, molecular dynamics (MD) simulations of oligosaccharide chain fragments of increasing length starting from the non-reducing end have been carried out for the first time in this study. They revealed a considerable loss in chain flexibility after addition of the internal N-acetylneuraminic acid onto the chain. Besides MD calculations with different dielectric constants, the conformational behaviour of the complete oligosaccharide chain of the 9-O-acetylated GD1a ganglioside was simulated in the solvents water and dimethyl sulfoxide. These solvents were also used in NMR measurements. The results of this study indicate that 9-O-acetylation at the terminal sialic acid does not influence the overall conformation of the ganglioside. An extended interaction analysis of energetically minimized conformations of GD1a (eNeu5,9Ac2) and GD1a, obtained during molecular dynamics simulations, allowed assessment of the influence of the different parts of the saccharide chains on spatial flexibility. Noteworthy energetic interactions, most interestingly between the 9-O-acetyl group and the pyranose ring of N-acetylgalactosamine, were ascertained by the calculations. However, the strength of this interaction does not force the ganglioside into a conformation, where the 9-O-acetyl group is no longer accessible. Binding of GD1a (eNeu5,9Ac2) to proteins, which are specific for 9-O-acetylated sialic acids, should thus at least partially be mediated by the presence of this group. To experimentally prove this assumption, a NMR study of 9-O-acetylated GD1a in the presence of an affinity-purified polyclonal IgG fraction from human serum with preferential binding to 9-O-acetylated sialic acid was performed. The almost complete disappearance of the intensity of the 9-O-acetyl methyl signal of the GD1a (eNeu5,9Ac2) clearly indicates that the assumed interaction of the 9-O-acetyl group with the human protein takes place.

PMID: 8922951 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Comparative analysis of essential collective dynamics and NMR-derived flexibility profiles in evolutionarily diverse prion proteins.
Comparative analysis of essential collective dynamics and NMR-derived flexibility profiles in evolutionarily diverse prion proteins. Comparative analysis of essential collective dynamics and NMR-derived flexibility profiles in evolutionarily diverse prion proteins. Prion. 2011 Jul 1;5(3) Authors: Santo KP, Berjanskii M, Wishart DS, Stepanova M Abstract Collective motions on ns-?s time scales are known to have a major impact on protein folding, stability, binding and enzymatic efficiency. It is also believed that these motions may have an...
nmrlearner Journal club 0 08-27-2011 04:53 PM
[NMR paper] Molecular dynamics simulations of protein G challenge NMR-derived correlated backbone
Molecular dynamics simulations of protein G challenge NMR-derived correlated backbone motions. Related Articles Molecular dynamics simulations of protein G challenge NMR-derived correlated backbone motions. Angew Chem Int Ed Engl. 2005 May 30;44(22):3394-9 Authors: Lange OF, Grubmüller H, de Groot BL
nmrlearner Journal club 0 11-25-2010 08:21 PM
[NMR paper] NMR and molecular dynamics studies of the interaction of melatonin with calmodulin.
NMR and molecular dynamics studies of the interaction of melatonin with calmodulin. Related Articles NMR and molecular dynamics studies of the interaction of melatonin with calmodulin. Protein Sci. 2004 Nov;13(11):2925-38 Authors: Turjanski AG, Estrin DA, Rosenstein RE, McCormick JE, Martin SR, Pastore A, Biekofsky RR, Martorana V Pineal hormone melatonin (N-acetyl-5-methoxytryptamine) is thought to modulate the calcium/calmodulin signaling pathway either by changing intracellular Ca(2+) concentration via activation of its G-protein-coupled...
nmrlearner Journal club 0 11-24-2010 10:03 PM
[NMR paper] The NMR-derived conformation of neuropeptide AF, an orphan G-protein coupled receptor
The NMR-derived conformation of neuropeptide AF, an orphan G-protein coupled receptor peptide. Related Articles The NMR-derived conformation of neuropeptide AF, an orphan G-protein coupled receptor peptide. Biopolymers. 2003 Jun;69(2):201-15 Authors: Miskolzie M, Kotovych G The tertiary structure of the pain modulating and anti-opiate neuropeptide, human neuropeptide AF (NPAF) (the sequence is AGEGLNSQFWSLAAPQRF-NH(2)), was determined by (1)H-NMR. The structure of NPAF was determined in two solvent systems, namely 50%/50%...
nmrlearner Journal club 0 11-24-2010 09:01 PM
[NMR paper] Intramolecular dynamics of low molecular weight protein tyrosine phosphatase in monom
Intramolecular dynamics of low molecular weight protein tyrosine phosphatase in monomer-dimer equilibrium studied by NMR: a model for changes in dynamics upon target binding. Related Articles Intramolecular dynamics of low molecular weight protein tyrosine phosphatase in monomer-dimer equilibrium studied by NMR: a model for changes in dynamics upon target binding. J Mol Biol. 2002 Sep 6;322(1):137-52 Authors: Akerud T, Thulin E, Van Etten RL, Akke M Low molecular weight protein tyrosine phosphatase (LMW-PTP) dimerizes in the phosphate-bound...
nmrlearner Journal club 0 11-24-2010 08:58 PM
[NMR paper] Analysis of error propagation from NMR-derived internuclear distances into molecular
Analysis of error propagation from NMR-derived internuclear distances into molecular structure of cyclo-pro-gly. Related Articles Analysis of error propagation from NMR-derived internuclear distances into molecular structure of cyclo-pro-gly. J Magn Reson. 1998 Dec;135(2):454-65 Authors: Dzakula Z, Jurani? , DeRider ML, Westler WM, Macura S, Markley JL Analytical expressions have been derived that translate uncertainties in distance constraints (obtained from NMR investigations) into uncertainties in atom positions in the maximum likelihood...
nmrlearner Journal club 0 11-17-2010 11:15 PM
[NMR paper] Synthesis and conformational analysis by 1H NMR and restrained molecular dynamics sim
Synthesis and conformational analysis by 1H NMR and restrained molecular dynamics simulations of the cyclic decapeptide Related Articles Synthesis and conformational analysis by 1H NMR and restrained molecular dynamics simulations of the cyclic decapeptide J Comput Aided Mol Des. 1996 Jun;10(3):213-32 Authors: Buono RA, Kucharczyk N, Neuenschwander M, Kemmink J, Hwang LY, Fauchère JL, Venanzi CA The design of enzyme mimics with therapeutic and industrial applications has interested both experimental and computational chemists for several...
nmrlearner Journal club 0 08-22-2010 02:27 PM
[NMR paper] Conformation of parathyroid hormone antagonists by CD, NMR, and molecular dynamics si
Conformation of parathyroid hormone antagonists by CD, NMR, and molecular dynamics simulations. Related Articles Conformation of parathyroid hormone antagonists by CD, NMR, and molecular dynamics simulations. Biopolymers. 1995 Oct;36(4):485-95 Authors: Chorev M, Behar V, Yang Q, Rosenblatt M, Mammi S, Maretto S, Pellegrini M, Peggion E The conformation of two highly potent parathyroid hormone (PTH) antagonists was investigated in water/2,2,2-trifluoroethanol mixtures. The two peptides are derived from the sequence (7-34) of PTH and of...
nmrlearner Journal club 0 08-22-2010 03:50 AM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 12:06 PM.


Map